1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
//! Data structures for representing decoded wasm modules.

use crate::{EntityRef, ModuleTranslation, PrimaryMap, Tunables, WASM_PAGE_SIZE};
use indexmap::IndexMap;
use serde::{Deserialize, Serialize};
use std::collections::BTreeMap;
use std::convert::TryFrom;
use std::ops::Range;
use wasmtime_types::*;

/// Implemenation styles for WebAssembly linear memory.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum MemoryStyle {
    /// The actual memory can be resized and moved.
    Dynamic {
        /// Extra space to reserve when a memory must be moved due to growth.
        reserve: u64,
    },
    /// Addresss space is allocated up front.
    Static {
        /// The number of mapped and unmapped pages.
        bound: u64,
    },
}

impl MemoryStyle {
    /// Decide on an implementation style for the given `Memory`.
    pub fn for_memory(memory: Memory, tunables: &Tunables) -> (Self, u64) {
        // A heap with a maximum that doesn't exceed the static memory bound specified by the
        // tunables make it static.
        //
        // If the module doesn't declare an explicit maximum treat it as 4GiB when not
        // requested to use the static memory bound itself as the maximum.
        let absolute_max_pages = if memory.memory64 {
            crate::WASM64_MAX_PAGES
        } else {
            crate::WASM32_MAX_PAGES
        };
        let maximum = std::cmp::min(
            memory.maximum.unwrap_or(absolute_max_pages),
            if tunables.static_memory_bound_is_maximum {
                std::cmp::min(tunables.static_memory_bound, absolute_max_pages)
            } else {
                absolute_max_pages
            },
        );

        // Ensure the minimum is less than the maximum; the minimum might exceed the maximum
        // when the memory is artificially bounded via `static_memory_bound_is_maximum` above
        if memory.minimum <= maximum && maximum <= tunables.static_memory_bound {
            return (
                Self::Static {
                    bound: tunables.static_memory_bound,
                },
                tunables.static_memory_offset_guard_size,
            );
        }

        // Otherwise, make it dynamic.
        (
            Self::Dynamic {
                reserve: tunables.dynamic_memory_growth_reserve,
            },
            tunables.dynamic_memory_offset_guard_size,
        )
    }
}

/// A WebAssembly linear memory description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct MemoryPlan {
    /// The WebAssembly linear memory description.
    pub memory: Memory,
    /// Our chosen implementation style.
    pub style: MemoryStyle,
    /// Chosen size of a guard page before the linear memory allocation.
    pub pre_guard_size: u64,
    /// Our chosen offset-guard size.
    pub offset_guard_size: u64,
}

impl MemoryPlan {
    /// Draw up a plan for implementing a `Memory`.
    pub fn for_memory(memory: Memory, tunables: &Tunables) -> Self {
        let (style, offset_guard_size) = MemoryStyle::for_memory(memory, tunables);
        Self {
            memory,
            style,
            offset_guard_size,
            pre_guard_size: if tunables.guard_before_linear_memory {
                offset_guard_size
            } else {
                0
            },
        }
    }
}

/// A WebAssembly linear memory initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MemoryInitializer {
    /// The index of a linear memory to initialize.
    pub memory_index: MemoryIndex,
    /// Optionally, a global variable giving a base index.
    pub base: Option<GlobalIndex>,
    /// The offset to add to the base.
    pub offset: u64,
    /// The range of the data to write within the linear memory.
    ///
    /// This range indexes into a separately stored data section which will be
    /// provided with the compiled module's code as well.
    pub data: Range<u32>,
}

/// The type of WebAssembly linear memory initialization to use for a module.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum MemoryInitialization {
    /// Memory initialization is segmented.
    ///
    /// Segmented initialization can be used for any module, but it is required if:
    ///
    /// * A data segment referenced an imported memory.
    /// * A data segment uses a global base.
    ///
    /// Segmented initialization is performed by processing the complete set of data segments
    /// when the module is instantiated.
    ///
    /// This is the default memory initialization type.
    Segmented(Vec<MemoryInitializer>),

    /// Memory initialization is paged.
    ///
    /// To be paged, the following requirements must be met:
    ///
    /// * All data segments must reference defined memories.
    /// * All data segments must not use a global base.
    ///
    /// Paged initialization is performed by copying (or mapping) entire WebAssembly pages to each linear memory.
    ///
    /// The `uffd` feature makes use of this type of memory initialization because it can instruct the kernel
    /// to back an entire WebAssembly page from an existing set of in-memory pages.
    ///
    /// By processing the data segments at module compilation time, the uffd fault handler doesn't have to do
    /// any work to point the kernel at the right linear memory page to use.
    Paged {
        /// The map of defined memory index to a list of initialization pages.
        ///
        /// The list of page data is sparse, with each element starting with
        /// the offset in memory where it will be placed (specified here, as
        /// a page index, with a `u64`). Each page of initialization data is
        /// WebAssembly page-sized (64 KiB). Pages whose offset are not
        /// specified in this array start with 0s in memory. The `Range`
        /// indices, like those in `MemoryInitializer`, point within a data
        /// segment that will come as an auxiliary descriptor with other data
        /// such as the compiled code for the wasm module.
        map: PrimaryMap<DefinedMemoryIndex, Vec<(u64, Range<u32>)>>,
        /// Whether or not an out-of-bounds data segment was observed.
        /// This is used to fail module instantiation after the pages are initialized.
        out_of_bounds: bool,
    },
}

impl ModuleTranslation<'_> {
    /// Attempts to convert segmented memory initialization into paged
    /// initialization for the module that this translation represents.
    ///
    /// If this module's memory initialization is not compatible with paged
    /// initialization then this won't change anything. Otherwise if it is
    /// compatible then the `memory_initialization` field will be updated.
    pub fn try_paged_init(&mut self) {
        let initializers = match &self.module.memory_initialization {
            MemoryInitialization::Segmented(list) => list,
            MemoryInitialization::Paged { .. } => return,
        };
        let page_size = u64::from(WASM_PAGE_SIZE);
        let num_defined_memories =
            self.module.memory_plans.len() - self.module.num_imported_memories;
        let mut out_of_bounds = false;

        // Initially all memories start out as all zeros, represented with a
        // lack of entries in the `BTreeMap` here. The map indexes byte offset
        // (which is always wasm-page-aligned) to the contents of the page, with
        // missing entries implicitly as all zeros.
        let mut page_contents = PrimaryMap::with_capacity(num_defined_memories);
        for _ in 0..num_defined_memories {
            page_contents.push(BTreeMap::new());
        }

        assert_eq!(initializers.len(), self.data.len());
        for (initializer, data) in initializers.iter().zip(&self.data) {
            let memory_index = match (
                self.module.defined_memory_index(initializer.memory_index),
                initializer.base.is_some(),
            ) {
                (None, _) | (_, true) => {
                    // If the initializer references an imported memory or uses a global base,
                    // the complete set of segments will need to be processed at module instantiation
                    return;
                }
                (Some(index), false) => index,
            };
            if out_of_bounds {
                continue;
            }

            // Perform a bounds check on the segment
            //
            // As this segment is referencing a defined memory without a global
            // base, the last byte written to by the segment cannot exceed the
            // memory's initial minimum size
            let len = u64::try_from(initializer.data.len()).unwrap();
            let end = match initializer.offset.checked_add(len) {
                Some(end) => end,
                None => {
                    out_of_bounds = true;
                    continue;
                }
            };
            let memory = &self.module.memory_plans[initializer.memory_index].memory;
            let initial_memory_end = memory.minimum * page_size;
            if end > initial_memory_end {
                out_of_bounds = true;
                continue;
            }

            // Perform the same style of initialization that instantiating the
            // module performs at this point, except initialize our
            // `page_contents` map which is indexed by page number and contains
            // the actual page contents.
            //
            // This is done iteratively page-by-page until the entire data
            // segment has been copied into the page map.
            let contents = &mut page_contents[memory_index];
            let mut page_index = initializer.offset / page_size;
            let mut page_offset = (initializer.offset % page_size) as usize;
            let mut data = &data[..];

            while !data.is_empty() {
                // If this page hasn't been seen before, then it starts out as
                // all zeros.
                let page = contents
                    .entry(page_index)
                    .or_insert_with(|| vec![0; page_size as usize]);
                let page = &mut page[page_offset..];

                let len = std::cmp::min(data.len(), page.len());
                page[..len].copy_from_slice(&data[..len]);

                page_index += 1;
                page_offset = 0;
                data = &data[len..];
            }
        }

        // If we've gotten this far then we're switching to paged
        // initialization. The contents of the initial wasm memory are
        // specified by `page_contents`, so the job now is to transform data
        // representation of wasm memory back into the representation we use
        // in a `Module`.
        //
        // This is done by clearing `self.data`, the original data segments,
        // since those are now all represented in `page_contents`. Afterwards
        // all the pages are subsequently pushed onto `self.data` and the
        // offsets within `self.data` are recorded in each segment that's part
        // of `Paged`.
        self.data.clear();
        let mut map = PrimaryMap::with_capacity(page_contents.len());
        let mut offset = 0;
        for (memory, pages) in page_contents {
            let mut page_offsets = Vec::with_capacity(pages.len());
            for (byte_offset, page) in pages {
                let end = offset + (page.len() as u32);
                page_offsets.push((byte_offset, offset..end));
                offset = end;
                self.data.push(page.into());
            }
            let index = map.push(page_offsets);
            assert_eq!(index, memory);
        }
        self.module.memory_initialization = MemoryInitialization::Paged { map, out_of_bounds };
    }
}

impl Default for MemoryInitialization {
    fn default() -> Self {
        Self::Segmented(Vec::new())
    }
}

/// Implementation styles for WebAssembly tables.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub enum TableStyle {
    /// Signatures are stored in the table and checked in the caller.
    CallerChecksSignature,
}

impl TableStyle {
    /// Decide on an implementation style for the given `Table`.
    pub fn for_table(_table: Table, _tunables: &Tunables) -> Self {
        Self::CallerChecksSignature
    }
}

/// A WebAssembly table description along with our chosen style for
/// implementing it.
#[derive(Debug, Clone, Hash, Serialize, Deserialize)]
pub struct TablePlan {
    /// The WebAssembly table description.
    pub table: Table,
    /// Our chosen implementation style.
    pub style: TableStyle,
}

impl TablePlan {
    /// Draw up a plan for implementing a `Table`.
    pub fn for_table(table: Table, tunables: &Tunables) -> Self {
        let style = TableStyle::for_table(table, tunables);
        Self { table, style }
    }
}

/// A WebAssembly table initializer.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct TableInitializer {
    /// The index of a table to initialize.
    pub table_index: TableIndex,
    /// Optionally, a global variable giving a base index.
    pub base: Option<GlobalIndex>,
    /// The offset to add to the base.
    pub offset: u32,
    /// The values to write into the table elements.
    pub elements: Box<[FuncIndex]>,
}

/// Different types that can appear in a module.
///
/// Note that each of these variants are intended to index further into a
/// separate table.
#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
#[allow(missing_docs)]
pub enum ModuleType {
    Function(SignatureIndex),
    Module(ModuleTypeIndex),
    Instance(InstanceTypeIndex),
}

impl ModuleType {
    /// Asserts this is a `ModuleType::Function`, returning the underlying
    /// `SignatureIndex`.
    pub fn unwrap_function(&self) -> SignatureIndex {
        match self {
            ModuleType::Function(f) => *f,
            _ => panic!("not a function type"),
        }
    }
}

/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
pub struct Module {
    /// The name of this wasm module, often found in the wasm file.
    pub name: Option<String>,

    /// All import records, in the order they are declared in the module.
    pub initializers: Vec<Initializer>,

    /// Exported entities.
    pub exports: IndexMap<String, EntityIndex>,

    /// The module "start" function, if present.
    pub start_func: Option<FuncIndex>,

    /// WebAssembly table initializers.
    pub table_initializers: Vec<TableInitializer>,

    /// WebAssembly linear memory initializer.
    pub memory_initialization: MemoryInitialization,

    /// WebAssembly passive elements.
    pub passive_elements: Vec<Box<[FuncIndex]>>,

    /// The map from passive element index (element segment index space) to index in `passive_elements`.
    pub passive_elements_map: BTreeMap<ElemIndex, usize>,

    /// The map from passive data index (data segment index space) to index in `passive_data`.
    pub passive_data_map: BTreeMap<DataIndex, Range<u32>>,

    /// WebAssembly function names.
    pub func_names: BTreeMap<FuncIndex, String>,

    /// Types declared in the wasm module.
    pub types: PrimaryMap<TypeIndex, ModuleType>,

    /// Number of imported or aliased functions in the module.
    pub num_imported_funcs: usize,

    /// Number of imported or aliased tables in the module.
    pub num_imported_tables: usize,

    /// Number of imported or aliased memories in the module.
    pub num_imported_memories: usize,

    /// Number of imported or aliased globals in the module.
    pub num_imported_globals: usize,

    /// Types of functions, imported and local.
    pub functions: PrimaryMap<FuncIndex, SignatureIndex>,

    /// WebAssembly tables.
    pub table_plans: PrimaryMap<TableIndex, TablePlan>,

    /// WebAssembly linear memory plans.
    pub memory_plans: PrimaryMap<MemoryIndex, MemoryPlan>,

    /// WebAssembly global variables.
    pub globals: PrimaryMap<GlobalIndex, Global>,

    /// The type of each wasm instance this module defines.
    pub instances: PrimaryMap<InstanceIndex, InstanceTypeIndex>,

    /// The type of each nested wasm module this module contains.
    pub modules: PrimaryMap<ModuleIndex, ModuleTypeIndex>,
}

/// Initialization routines for creating an instance, encompassing imports,
/// modules, instances, aliases, etc.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum Initializer {
    /// An imported item is required to be provided.
    Import {
        /// Name of this import
        name: String,
        /// The field name projection of this import. When module-linking is
        /// enabled this is always `None`. Otherwise this is always `Some`.
        field: Option<String>,
        /// Where this import will be placed, which also has type information
        /// about the import.
        index: EntityIndex,
    },

    /// An export from a previously defined instance is being inserted into our
    /// index space.
    ///
    /// Note that when the module linking proposal is enabled two-level imports
    /// will implicitly desugar to this initializer.
    AliasInstanceExport {
        /// The instance that we're referencing.
        instance: InstanceIndex,
        /// Which export is being inserted into our index space.
        export: String,
    },

    /// A module is being instantiated with previously configured initializers
    /// as arguments.
    Instantiate {
        /// The module that this instance is instantiating.
        module: ModuleIndex,
        /// The arguments provided to instantiation, along with their name in
        /// the instance being instantiated.
        args: IndexMap<String, EntityIndex>,
    },

    /// A module is being created from a set of compiled artifacts.
    CreateModule {
        /// The index of the artifact that's being converted into a module.
        artifact_index: usize,
        /// The list of artifacts that this module value will be inheriting.
        artifacts: Vec<usize>,
        /// The list of modules that this module value will inherit.
        modules: Vec<ModuleUpvar>,
    },

    /// A module is created from a closed-over-module value, defined when this
    /// module was created.
    DefineModule(usize),
}

/// Where module values can come from when creating a new module from a compiled
/// artifact.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum ModuleUpvar {
    /// A module value is inherited from the module creating the new module.
    Inherit(usize),
    /// A module value comes from the instance-to-be-created module index space.
    Local(ModuleIndex),
}

impl Module {
    /// Allocates the module data structures.
    pub fn new() -> Self {
        Module::default()
    }

    /// Get the given passive element, if it exists.
    pub fn get_passive_element(&self, index: ElemIndex) -> Option<&[FuncIndex]> {
        let index = *self.passive_elements_map.get(&index)?;
        Some(self.passive_elements[index].as_ref())
    }

    /// Convert a `DefinedFuncIndex` into a `FuncIndex`.
    #[inline]
    pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
        FuncIndex::new(self.num_imported_funcs + defined_func.index())
    }

    /// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
    /// index is an imported function.
    #[inline]
    pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
        if func.index() < self.num_imported_funcs {
            None
        } else {
            Some(DefinedFuncIndex::new(
                func.index() - self.num_imported_funcs,
            ))
        }
    }

    /// Test whether the given function index is for an imported function.
    #[inline]
    pub fn is_imported_function(&self, index: FuncIndex) -> bool {
        index.index() < self.num_imported_funcs
    }

    /// Convert a `DefinedTableIndex` into a `TableIndex`.
    #[inline]
    pub fn table_index(&self, defined_table: DefinedTableIndex) -> TableIndex {
        TableIndex::new(self.num_imported_tables + defined_table.index())
    }

    /// Convert a `TableIndex` into a `DefinedTableIndex`. Returns None if the
    /// index is an imported table.
    #[inline]
    pub fn defined_table_index(&self, table: TableIndex) -> Option<DefinedTableIndex> {
        if table.index() < self.num_imported_tables {
            None
        } else {
            Some(DefinedTableIndex::new(
                table.index() - self.num_imported_tables,
            ))
        }
    }

    /// Test whether the given table index is for an imported table.
    #[inline]
    pub fn is_imported_table(&self, index: TableIndex) -> bool {
        index.index() < self.num_imported_tables
    }

    /// Convert a `DefinedMemoryIndex` into a `MemoryIndex`.
    #[inline]
    pub fn memory_index(&self, defined_memory: DefinedMemoryIndex) -> MemoryIndex {
        MemoryIndex::new(self.num_imported_memories + defined_memory.index())
    }

    /// Convert a `MemoryIndex` into a `DefinedMemoryIndex`. Returns None if the
    /// index is an imported memory.
    #[inline]
    pub fn defined_memory_index(&self, memory: MemoryIndex) -> Option<DefinedMemoryIndex> {
        if memory.index() < self.num_imported_memories {
            None
        } else {
            Some(DefinedMemoryIndex::new(
                memory.index() - self.num_imported_memories,
            ))
        }
    }

    /// Test whether the given memory index is for an imported memory.
    #[inline]
    pub fn is_imported_memory(&self, index: MemoryIndex) -> bool {
        index.index() < self.num_imported_memories
    }

    /// Convert a `DefinedGlobalIndex` into a `GlobalIndex`.
    #[inline]
    pub fn global_index(&self, defined_global: DefinedGlobalIndex) -> GlobalIndex {
        GlobalIndex::new(self.num_imported_globals + defined_global.index())
    }

    /// Convert a `GlobalIndex` into a `DefinedGlobalIndex`. Returns None if the
    /// index is an imported global.
    #[inline]
    pub fn defined_global_index(&self, global: GlobalIndex) -> Option<DefinedGlobalIndex> {
        if global.index() < self.num_imported_globals {
            None
        } else {
            Some(DefinedGlobalIndex::new(
                global.index() - self.num_imported_globals,
            ))
        }
    }

    /// Test whether the given global index is for an imported global.
    #[inline]
    pub fn is_imported_global(&self, index: GlobalIndex) -> bool {
        index.index() < self.num_imported_globals
    }

    /// Returns an iterator of all the imports in this module, along with their
    /// module name, field name, and type that's being imported.
    pub fn imports(&self) -> impl Iterator<Item = (&str, Option<&str>, EntityType)> {
        self.initializers.iter().filter_map(move |i| match i {
            Initializer::Import { name, field, index } => {
                Some((name.as_str(), field.as_deref(), self.type_of(*index)))
            }
            _ => None,
        })
    }

    /// Returns the type of an item based on its index
    pub fn type_of(&self, index: EntityIndex) -> EntityType {
        match index {
            EntityIndex::Global(i) => EntityType::Global(self.globals[i]),
            EntityIndex::Table(i) => EntityType::Table(self.table_plans[i].table),
            EntityIndex::Memory(i) => EntityType::Memory(self.memory_plans[i].memory),
            EntityIndex::Function(i) => EntityType::Function(self.functions[i]),
            EntityIndex::Instance(i) => EntityType::Instance(self.instances[i]),
            EntityIndex::Module(i) => EntityType::Module(self.modules[i]),
        }
    }
}

/// All types which are recorded for the entirety of a translation.
///
/// Note that this is shared amongst all modules coming out of a translation
/// in the case of nested modules and the module linking proposal.
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
#[allow(missing_docs)]
pub struct TypeTables {
    pub wasm_signatures: PrimaryMap<SignatureIndex, WasmFuncType>,
    pub module_signatures: PrimaryMap<ModuleTypeIndex, ModuleSignature>,
    pub instance_signatures: PrimaryMap<InstanceTypeIndex, InstanceSignature>,
}

/// The type signature of known modules.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ModuleSignature {
    /// All imports in this module, listed in order with their name and
    /// what type they're importing.
    pub imports: IndexMap<String, EntityType>,
    /// Exports are what an instance type conveys, so we go through an
    /// indirection over there.
    pub exports: InstanceTypeIndex,
}

/// The type signature of known instances.
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
pub struct InstanceSignature {
    /// The name of what's being exported as well as its type signature.
    pub exports: IndexMap<String, EntityType>,
}