1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
use crate::EventSectionReader;
use crate::{AliasSectionReader, InstanceSectionReader};
use crate::{BinaryReader, BinaryReaderError, FunctionBody, Range, Result};
use crate::{DataSectionReader, ElementSectionReader, ExportSectionReader};
use crate::{FunctionSectionReader, ImportSectionReader, TypeSectionReader};
use crate::{GlobalSectionReader, MemorySectionReader, TableSectionReader};
use std::convert::TryInto;
use std::fmt;
use std::iter;

/// An incremental parser of a binary WebAssembly module.
///
/// This type is intended to be used to incrementally parse a WebAssembly module
/// as bytes become available for the module. This can also be used to parse
/// modules that are already entirely resident within memory.
///
/// This primary function for a parser is the [`Parser::parse`] function which
/// will incrementally consume input. You can also use the [`Parser::parse_all`]
/// function to parse a module that is entirely resident in memory.
#[derive(Debug, Clone)]
pub struct Parser {
    state: State,
    offset: u64,
    max_size: u64,
}

#[derive(Debug, Clone)]
enum State {
    ModuleHeader,
    SectionStart,
    FunctionBody { remaining: u32, len: u32 },
    Module { remaining: u32, len: u32 },
}

/// A successful return payload from [`Parser::parse`].
///
/// On success one of two possible values can be returned, either that more data
/// is needed to continue parsing or a chunk of the input was parsed, indicating
/// how much of it was parsed.
#[derive(Debug)]
pub enum Chunk<'a> {
    /// This can be returned at any time and indicates that more data is needed
    /// to proceed with parsing. Zero bytes were consumed from the input to
    /// [`Parser::parse`]. The `usize` value here is a hint as to how many more
    /// bytes are needed to continue parsing.
    NeedMoreData(u64),

    /// A chunk was successfully parsed.
    Parsed {
        /// This many bytes of the `data` input to [`Parser::parse`] were
        /// consumed to produce `payload`.
        consumed: usize,
        /// The value that we actually parsed.
        payload: Payload<'a>,
    },
}

/// Values that can be parsed from a wasm module.
///
/// This enumeration is all possible chunks of pieces that can be parsed by a
/// [`Parser`] from a binary WebAssembly module. Note that for many sections the
/// entire section is parsed all at once, whereas other functions, like the code
/// section, are parsed incrementally. This is a distinction where some
/// sections, like the type section, are required to be fully resident in memory
/// (fully downloaded) before proceeding. Other sections, like the code section,
/// can be processed in a streaming fashion where each function is extracted
/// individually so it can possibly be shipped to another thread while you wait
/// for more functions to get downloaded.
///
/// Note that payloads, when returned, do not indicate that the wasm module is
/// valid. For example when you receive a `Payload::TypeSection` the type
/// section itself has not yet actually been parsed. The reader returned will be
/// able to parse it, but you'll have to actually iterate the reader to do the
/// full parse. Each payload returned is intended to be a *window* into the
/// original `data` passed to [`Parser::parse`] which can be further processed
/// if necessary.
pub enum Payload<'a> {
    /// Indicates the header of a WebAssembly binary.
    ///
    /// This header also indicates the version number that was parsed, which is
    /// currently always 1.
    Version {
        /// The version number found
        num: u32,
        /// The range of bytes that were parsed to consume the header of the
        /// module. Note that this range is relative to the start of the byte
        /// stream.
        range: Range,
    },

    /// A type section was received, and the provided reader can be used to
    /// parse the contents of the type section.
    TypeSection(crate::TypeSectionReader<'a>),
    /// A import section was received, and the provided reader can be used to
    /// parse the contents of the import section.
    ImportSection(crate::ImportSectionReader<'a>),
    /// An alias section was received, and the provided reader can be used to
    /// parse the contents of the alias section.
    AliasSection(crate::AliasSectionReader<'a>),
    /// An instance section was received, and the provided reader can be used to
    /// parse the contents of the instance section.
    InstanceSection(crate::InstanceSectionReader<'a>),
    /// A function section was received, and the provided reader can be used to
    /// parse the contents of the function section.
    FunctionSection(crate::FunctionSectionReader<'a>),
    /// A table section was received, and the provided reader can be used to
    /// parse the contents of the table section.
    TableSection(crate::TableSectionReader<'a>),
    /// A memory section was received, and the provided reader can be used to
    /// parse the contents of the memory section.
    MemorySection(crate::MemorySectionReader<'a>),
    /// An event section was received, and the provided reader can be used to
    /// parse the contents of the event section.
    EventSection(crate::EventSectionReader<'a>),
    /// A global section was received, and the provided reader can be used to
    /// parse the contents of the global section.
    GlobalSection(crate::GlobalSectionReader<'a>),
    /// An export section was received, and the provided reader can be used to
    /// parse the contents of the export section.
    ExportSection(crate::ExportSectionReader<'a>),
    /// A start section was received, and the `u32` here is the index of the
    /// start function.
    StartSection {
        /// The start function index
        func: u32,
        /// The range of bytes that specify the `func` field, specified in
        /// offsets relative to the start of the byte stream.
        range: Range,
    },
    /// An element section was received, and the provided reader can be used to
    /// parse the contents of the element section.
    ElementSection(crate::ElementSectionReader<'a>),
    /// A data count section was received, and the `u32` here is the contents of
    /// the data count section.
    DataCountSection {
        /// The number of data segments.
        count: u32,
        /// The range of bytes that specify the `count` field, specified in
        /// offsets relative to the start of the byte stream.
        range: Range,
    },
    /// A data section was received, and the provided reader can be used to
    /// parse the contents of the data section.
    DataSection(crate::DataSectionReader<'a>),
    /// A custom section was found.
    CustomSection {
        /// The name of the custom section.
        name: &'a str,
        /// The offset, relative to the start of the original module, that the
        /// payload for this custom section starts at.
        data_offset: usize,
        /// The actual contents of the custom section.
        data: &'a [u8],
    },

    /// Indicator of the start of the code section.
    ///
    /// This entry is returned whenever the code section starts. The `count`
    /// field indicates how many entries are in this code section. After
    /// receiving this start marker you're guaranteed that the next `count`
    /// items will be either `CodeSectionEntry` or an error will be returned.
    ///
    /// This, unlike other sections, is intended to be used for streaming the
    /// contents of the code section. The code section is not required to be
    /// fully resident in memory when we parse it. Instead a [`Parser`] is
    /// capable of parsing piece-by-piece of a code section.
    CodeSectionStart {
        /// The number of functions in this section.
        count: u32,
        /// The range of bytes that represent this section, specified in
        /// offsets relative to the start of the byte stream.
        range: Range,
        /// The size, in bytes, of the remaining contents of this section.
        ///
        /// This can be used in combination with [`Parser::skip_section`]
        /// where the caller will know how many bytes to skip before feeding
        /// bytes into `Parser` again.
        size: u32,
    },

    /// An entry of the code section, a function, was parsed.
    ///
    /// This entry indicates that a function was successfully received from the
    /// code section, and the payload here is the window into the original input
    /// where the function resides. Note that the function itself has not been
    /// parsed, it's only been outlined. You'll need to process the
    /// `FunctionBody` provided to test whether it parses and/or is valid.
    CodeSectionEntry(crate::FunctionBody<'a>),

    /// Indicator of the start of the module code section.
    ///
    /// This behaves the same as the `CodeSectionStart` payload being returned.
    /// You're guaranteed the next `count` items will be of type
    /// `ModuleSectionEntry`.
    ModuleSectionStart {
        /// The number of inline modules in this section.
        count: u32,
        /// The range of bytes that represent this section, specified in
        /// offsets relative to the start of the byte stream.
        range: Range,
        /// The size, in bytes, of the remaining contents of this section.
        size: u32,
    },

    /// An entry of the module code section, a module, was parsed.
    ///
    /// This variant is special in that it returns a sub-`Parser`. Upon
    /// receiving a `ModuleSectionEntry` it is expected that the returned
    /// `Parser` will be used instead of the parent `Parser` until the parse has
    /// finished. You'll need to feed data into the `Parser` returned until it
    /// returns `Payload::End`. After that you'll switch back to the parent
    /// parser to resume parsing the rest of the module code section.
    ///
    /// Note that binaries will not be parsed correctly if you feed the data for
    /// a nested module into the parent [`Parser`].
    ModuleSectionEntry {
        /// The parser to use to parse the contents of the nested submodule.
        /// This parser should be used until it reports `End`.
        parser: Parser,
        /// The range of bytes, relative to the start of the input stream, of
        /// the bytes containing this submodule.
        range: Range,
    },

    /// An unknown section was found.
    ///
    /// This variant is returned for all unknown sections in a wasm file. This
    /// likely wants to be interpreted as an error by consumers of the parser,
    /// but this can also be used to parse sections unknown to wasmparser at
    /// this time.
    UnknownSection {
        /// The 8-bit identifier for this section.
        id: u8,
        /// The contents of this section.
        contents: &'a [u8],
        /// The range of bytes, relative to the start of the original data
        /// stream, that the contents of this section reside in.
        range: Range,
    },

    /// The end of the WebAssembly module was reached.
    End,
}

impl Parser {
    /// Creates a new module parser.
    ///
    /// Reports errors and ranges relative to `offset` provided, where `offset`
    /// is some logical offset within the input stream that we're parsing.
    pub fn new(offset: u64) -> Parser {
        Parser {
            state: State::ModuleHeader,
            offset,
            max_size: u64::max_value(),
        }
    }

    /// Attempts to parse a chunk of data.
    ///
    /// This method will attempt to parse the next incremental portion of a
    /// WebAssembly binary. Data available for the module is provided as `data`,
    /// and the data can be incomplete if more data has yet to arrive for the
    /// module. The `eof` flag indicates whether `data` represents all possible
    /// data for the module and no more data will ever be received.
    ///
    /// There are two ways parsing can succeed with this method:
    ///
    /// * `Chunk::NeedMoreData` - this indicates that there is not enough bytes
    ///   in `data` to parse a chunk of this module. The caller needs to wait
    ///   for more data to be available in this situation before calling this
    ///   method again. It is guaranteed that this is only returned if `eof` is
    ///   `false`.
    ///
    /// * `Chunk::Parsed` - this indicates that a chunk of the input was
    ///   successfully parsed. The payload is available in this variant of what
    ///   was parsed, and this also indicates how many bytes of `data` was
    ///   consumed. It's expected that the caller will not provide these bytes
    ///   back to the [`Parser`] again.
    ///
    /// Note that all `Chunk` return values are connected, with a lifetime, to
    /// the input buffer. Each parsed chunk borrows the input buffer and is a
    /// view into it for successfully parsed chunks.
    ///
    /// It is expected that you'll call this method until `Payload::End` is
    /// reached, at which point you're guaranteed that the module has completely
    /// parsed. Note that complete parsing, for the top-level wasm module,
    /// implies that `data` is empty and `eof` is `true`.
    ///
    /// # Errors
    ///
    /// Parse errors are returned as an `Err`. Errors can happen when the
    /// structure of the module is unexpected, or if sections are too large for
    /// example. Note that errors are not returned for malformed *contents* of
    /// sections here. Sections are generally not individually parsed and each
    /// returned [`Payload`] needs to be iterated over further to detect all
    /// errors.
    ///
    /// # Examples
    ///
    /// An example of reading a wasm file from a stream (`std::io::Read`) and
    /// incrementally parsing it.
    ///
    /// ```
    /// use std::io::Read;
    /// use anyhow::Result;
    /// use wasmparser::{Parser, Chunk, Payload::*};
    ///
    /// fn parse(mut reader: impl Read) -> Result<()> {
    ///     let mut buf = Vec::new();
    ///     let mut parser = Parser::new(0);
    ///     let mut eof = false;
    ///     let mut stack = Vec::new();
    ///
    ///     loop {
    ///         let (payload, consumed) = match parser.parse(&buf, eof)? {
    ///             Chunk::NeedMoreData(hint) => {
    ///                 assert!(!eof); // otherwise an error would be returned
    ///
    ///                 // Use the hint to preallocate more space, then read
    ///                 // some more data into our buffer.
    ///                 //
    ///                 // Note that the buffer management here is not ideal,
    ///                 // but it's compact enough to fit in an example!
    ///                 let len = buf.len();
    ///                 buf.extend((0..hint).map(|_| 0u8));
    ///                 let n = reader.read(&mut buf[len..])?;
    ///                 buf.truncate(len + n);
    ///                 eof = n == 0;
    ///                 continue;
    ///             }
    ///
    ///             Chunk::Parsed { consumed, payload } => (payload, consumed),
    ///         };
    ///
    ///         match payload {
    ///             // Each of these would be handled individually as necessary
    ///             Version { .. } => { /* ... */ }
    ///             TypeSection(_) => { /* ... */ }
    ///             ImportSection(_) => { /* ... */ }
    ///             AliasSection(_) => { /* ... */ }
    ///             InstanceSection(_) => { /* ... */ }
    ///             FunctionSection(_) => { /* ... */ }
    ///             TableSection(_) => { /* ... */ }
    ///             MemorySection(_) => { /* ... */ }
    ///             EventSection(_) => { /* ... */ }
    ///             GlobalSection(_) => { /* ... */ }
    ///             ExportSection(_) => { /* ... */ }
    ///             StartSection { .. } => { /* ... */ }
    ///             ElementSection(_) => { /* ... */ }
    ///             DataCountSection { .. } => { /* ... */ }
    ///             DataSection(_) => { /* ... */ }
    ///
    ///             // Here we know how many functions we'll be receiving as
    ///             // `CodeSectionEntry`, so we can prepare for that, and
    ///             // afterwards we can parse and handle each function
    ///             // individually.
    ///             CodeSectionStart { .. } => { /* ... */ }
    ///             CodeSectionEntry(body) => {
    ///                 // here we can iterate over `body` to parse the function
    ///                 // and its locals
    ///             }
    ///
    ///             // When parsing nested modules we need to switch which
    ///             // `Parser` we're using.
    ///             ModuleSectionStart { .. } => { /* ... */ }
    ///             ModuleSectionEntry { parser: subparser, .. } => {
    ///                 stack.push(parser);
    ///                 parser = subparser;
    ///             }
    ///
    ///             CustomSection { name, .. } => { /* ... */ }
    ///
    ///             // most likely you'd return an error here
    ///             UnknownSection { id, .. } => { /* ... */ }
    ///
    ///             // Once we've reached the end of a module we either resume
    ///             // at the parent module or we break out of the loop because
    ///             // we're done.
    ///             End => {
    ///                 if let Some(parent_parser) = stack.pop() {
    ///                     parser = parent_parser;
    ///                 } else {
    ///                     break;
    ///                 }
    ///             }
    ///         }
    ///
    ///         // once we're done processing the payload we can forget the
    ///         // original.
    ///         buf.drain(..consumed);
    ///     }
    ///
    ///     Ok(())
    /// }
    ///
    /// # parse(&b"\0asm\x01\0\0\0"[..]).unwrap();
    /// ```
    pub fn parse<'a>(&mut self, data: &'a [u8], eof: bool) -> Result<Chunk<'a>> {
        let (data, eof) = if usize_to_u64(data.len()) > self.max_size {
            (&data[..(self.max_size as usize)], true)
        } else {
            (data, eof)
        };
        // TODO: thread through `offset: u64` to `BinaryReader`, remove
        // the cast here.
        let mut reader = BinaryReader::new_with_offset(data, self.offset as usize);
        match self.parse_reader(&mut reader, eof) {
            Ok(payload) => {
                // Be sure to update our offset with how far we got in the
                // reader
                self.offset += usize_to_u64(reader.position);
                self.max_size -= usize_to_u64(reader.position);
                Ok(Chunk::Parsed {
                    consumed: reader.position,
                    payload,
                })
            }
            Err(e) => {
                // If we're at EOF then there's no way we can recover from any
                // error, so continue to propagate it.
                if eof {
                    return Err(e);
                }

                // If our error doesn't look like it can be resolved with more
                // data being pulled down, then propagate it, otherwise switch
                // the error to "feed me please"
                match e.inner.needed_hint {
                    Some(hint) => Ok(Chunk::NeedMoreData(usize_to_u64(hint))),
                    None => Err(e),
                }
            }
        }
    }

    fn parse_reader<'a>(
        &mut self,
        reader: &mut BinaryReader<'a>,
        eof: bool,
    ) -> Result<Payload<'a>> {
        use Payload::*;

        match self.state {
            State::ModuleHeader => {
                let start = reader.original_position();
                let num = reader.read_file_header()?;
                self.state = State::SectionStart;
                Ok(Version {
                    num,
                    range: Range {
                        start,
                        end: reader.original_position(),
                    },
                })
            }
            State::SectionStart => {
                // If we're at eof and there are no bytes in our buffer, then
                // that means we reached the end of the wasm file since it's
                // just a bunch of sections concatenated after the module
                // header.
                if eof && reader.bytes_remaining() == 0 {
                    return Ok(Payload::End);
                }

                let id = reader.read_var_u7()? as u8;
                let len_pos = reader.position;
                let mut len = reader.read_var_u32()?;

                // Test to make sure that this section actually fits within
                // `Parser::max_size`. This doesn't matter for top-level modules
                // but it is required for nested modules to correctly ensure
                // that all sections live entirely within their section of the
                // file.
                let section_overflow = self
                    .max_size
                    .checked_sub(usize_to_u64(reader.position))
                    .and_then(|s| s.checked_sub(len.into()))
                    .is_none();
                if section_overflow {
                    return Err(BinaryReaderError::new("section too large", len_pos));
                }

                match id {
                    0 => {
                        let mut content = subreader(reader, len)?;
                        // Note that if this fails we can't read any more bytes,
                        // so clear the "we'd succeed if we got this many more
                        // bytes" because we can't recover from "eof" at this point.
                        let name = content.read_string().map_err(clear_hint)?;
                        Ok(Payload::CustomSection {
                            name,
                            data_offset: content.original_position(),
                            data: content.remaining_buffer(),
                        })
                    }
                    1 => section(reader, len, TypeSectionReader::new, TypeSection),
                    2 => section(reader, len, ImportSectionReader::new, ImportSection),
                    3 => section(reader, len, FunctionSectionReader::new, FunctionSection),
                    4 => section(reader, len, TableSectionReader::new, TableSection),
                    5 => section(reader, len, MemorySectionReader::new, MemorySection),
                    6 => section(reader, len, GlobalSectionReader::new, GlobalSection),
                    7 => section(reader, len, ExportSectionReader::new, ExportSection),
                    8 => {
                        let (func, range) = single_u32(reader, len, "start")?;
                        Ok(StartSection { func, range })
                    }
                    9 => section(reader, len, ElementSectionReader::new, ElementSection),
                    10 => {
                        let start = reader.original_position();
                        let count = delimited(reader, &mut len, |r| r.read_var_u32())?;
                        let range = Range {
                            start,
                            end: reader.original_position() + len as usize,
                        };
                        self.state = State::FunctionBody {
                            remaining: count,
                            len,
                        };
                        Ok(CodeSectionStart {
                            count,
                            range,
                            size: len,
                        })
                    }
                    11 => section(reader, len, DataSectionReader::new, DataSection),
                    12 => {
                        let (count, range) = single_u32(reader, len, "data count")?;
                        Ok(DataCountSection { count, range })
                    }
                    13 => section(reader, len, EventSectionReader::new, EventSection),
                    14 => {
                        let start = reader.original_position();
                        let count = delimited(reader, &mut len, |r| r.read_var_u32())?;
                        let range = Range {
                            start,
                            end: reader.original_position() + len as usize,
                        };
                        self.state = State::Module {
                            remaining: count,
                            len,
                        };
                        Ok(ModuleSectionStart {
                            count,
                            range,
                            size: len,
                        })
                    }
                    15 => section(reader, len, InstanceSectionReader::new, InstanceSection),
                    16 => section(reader, len, AliasSectionReader::new, AliasSection),
                    id => {
                        let offset = reader.original_position();
                        let contents = reader.read_bytes(len as usize)?;
                        let range = Range {
                            start: offset,
                            end: offset + len as usize,
                        };
                        Ok(UnknownSection {
                            id,
                            contents,
                            range,
                        })
                    }
                }
            }

            // Once we hit 0 remaining incrementally parsed items, with 0
            // remaining bytes in each section, we're done and can switch back
            // to parsing sections.
            State::FunctionBody {
                remaining: 0,
                len: 0,
            }
            | State::Module {
                remaining: 0,
                len: 0,
            } => {
                self.state = State::SectionStart;
                self.parse_reader(reader, eof)
            }

            // ... otherwise trailing bytes with no remaining entries in these
            // sections indicates an error.
            State::FunctionBody { remaining: 0, len } | State::Module { remaining: 0, len } => {
                debug_assert!(len > 0);
                let offset = reader.original_position();
                Err(BinaryReaderError::new(
                    "trailing bytes at end of section",
                    offset,
                ))
            }

            // Functions are relatively easy to parse when we know there's at
            // least one remaining and at least one byte available to read
            // things.
            //
            // We use the remaining length try to read a u32 size of the
            // function, and using that size we require the entire function be
            // resident in memory. This means that we're reading whole chunks of
            // functions at a time.
            //
            // Limiting via `Parser::max_size` (nested modules) happens above in
            // `fn parse`, and limiting by our section size happens via
            // `delimited`. Actual parsing of the function body is delegated to
            // the caller to iterate over the `FunctionBody` structure.
            State::FunctionBody { remaining, mut len } => {
                let body = delimited(reader, &mut len, |r| {
                    let size = r.read_var_u32()?;
                    let offset = r.original_position();
                    Ok(FunctionBody::new(offset, r.read_bytes(size as usize)?))
                })?;
                self.state = State::FunctionBody {
                    remaining: remaining - 1,
                    len,
                };
                Ok(CodeSectionEntry(body))
            }

            // Modules are trickier than functions. What's going to happen here
            // is that we'll be offloading parsing to a sub-`Parser`. This
            // sub-`Parser` will be delimited to not read past the size of the
            // module that's specified.
            //
            // So the first thing that happens here is we read the size of the
            // module. We use `delimited` to make sure the bytes specifying the
            // size of the module are themselves within the module code section.
            //
            // Once we've read the size of a module, however, there's a few
            // pieces of state that we need to update. We as a parser will not
            // receive the next `size` bytes, so we need to update our internal
            // bookkeeping to account for that:
            //
            // * The `len`, number of bytes remaining in this section, is
            //   decremented by `size`. This can underflow, however, meaning
            //   that the size of the module doesn't fit within the section.
            //
            // * Our `Parser::max_size` field needs to account for the bytes
            //   that we're reading. Note that this is guaranteed to not
            //   underflow, however, because whenever we parse a section header
            //   we guarantee that its contents fit within our `max_size`.
            //
            // To update `len` we do that when updating `self.state`, and to
            // update `max_size` we do that inline. Note that this will get
            // further tweaked after we return with the bytes we read specifying
            // the size of the module itself.
            State::Module { remaining, mut len } => {
                let size = delimited(reader, &mut len, |r| r.read_var_u32())?;
                match len.checked_sub(size) {
                    Some(i) => len = i,
                    None => {
                        return Err(BinaryReaderError::new(
                            "Unexpected EOF",
                            reader.original_position(),
                        ));
                    }
                }
                self.state = State::Module {
                    remaining: remaining - 1,
                    len,
                };
                let range = Range {
                    start: reader.original_position(),
                    end: reader.original_position() + size as usize,
                };
                self.max_size -= u64::from(size);
                self.offset += u64::from(size);
                let mut parser = Parser::new(usize_to_u64(reader.original_position()));
                parser.max_size = size.into();
                Ok(ModuleSectionEntry { parser, range })
            }
        }
    }

    /// Convenience function that can be used to parse a module entirely
    /// resident in memory.
    ///
    /// This function will parse the `data` provided as a WebAssembly module,
    /// assuming that `data` represents the entire WebAssembly module.
    ///
    /// Note that when this function yields `ModuleSectionEntry`
    /// no action needs to be taken with the returned parser. The parser will be
    /// automatically switched to internally and more payloads will continue to
    /// get returned.
    pub fn parse_all<'a>(
        self,
        mut data: &'a [u8],
    ) -> impl Iterator<Item = Result<Payload<'a>>> + 'a {
        let mut stack = Vec::new();
        let mut cur = self;
        let mut done = false;
        iter::from_fn(move || {
            if done {
                return None;
            }
            let payload = match cur.parse(data, true) {
                // Propagate all errors
                Err(e) => return Some(Err(e)),

                // This isn't possible because `eof` is always true.
                Ok(Chunk::NeedMoreData(_)) => unreachable!(),

                Ok(Chunk::Parsed { payload, consumed }) => {
                    data = &data[consumed..];
                    payload
                }
            };

            match &payload {
                // If a module ends then we either finished the current
                // module or, if there's a parent, we switch back to
                // resuming parsing the parent.
                Payload::End => match stack.pop() {
                    Some(p) => cur = p,
                    None => done = true,
                },

                // When we enter a nested module then we need to update our
                // current parser, saving off the previous state.
                //
                // Afterwards we turn the loop again to recurse in parsing the
                // nested module.
                Payload::ModuleSectionEntry { parser, range: _ } => {
                    stack.push(cur.clone());
                    cur = parser.clone();
                }

                _ => {}
            }

            Some(Ok(payload))
        })
    }

    /// Skip parsing the code or module code section entirely.
    ///
    /// This function can be used to indicate, after receiving
    /// `CodeSectionStart` or `ModuleSectionStart`, that the section
    /// will not be parsed.
    ///
    /// The caller will be responsible for skipping `size` bytes (found in the
    /// `CodeSectionStart` or `ModuleSectionStart` payload). Bytes should
    /// only be fed into `parse` after the `size` bytes have been skipped.
    ///
    /// # Panics
    ///
    /// This function will panic if the parser is not in a state where it's
    /// parsing the code or module code section.
    ///
    /// # Examples
    ///
    /// ```
    /// use wasmparser::{Result, Parser, Chunk, Range, SectionReader, Payload::*};
    ///
    /// fn objdump_headers(mut wasm: &[u8]) -> Result<()> {
    ///     let mut parser = Parser::new(0);
    ///     loop {
    ///         let payload = match parser.parse(wasm, true)? {
    ///             Chunk::Parsed { consumed, payload } => {
    ///                 wasm = &wasm[consumed..];
    ///                 payload
    ///             }
    ///             // this state isn't possible with `eof = true`
    ///             Chunk::NeedMoreData(_) => unreachable!(),
    ///         };
    ///         match payload {
    ///             TypeSection(s) => print_range("type section", &s.range()),
    ///             ImportSection(s) => print_range("import section", &s.range()),
    ///             // .. other sections
    ///
    ///             // Print the range of the code section we see, but don't
    ///             // actually iterate over each individual function.
    ///             CodeSectionStart { range, size, .. } => {
    ///                 print_range("code section", &range);
    ///                 parser.skip_section();
    ///                 wasm = &wasm[size as usize..];
    ///             }
    ///             End => break,
    ///             _ => {}
    ///         }
    ///     }
    ///     Ok(())
    /// }
    ///
    /// fn print_range(section: &str, range: &Range) {
    ///     println!("{:>40}: {:#010x} - {:#010x}", section, range.start, range.end);
    /// }
    /// ```
    pub fn skip_section(&mut self) {
        let skip = match self.state {
            State::FunctionBody { remaining: _, len } | State::Module { remaining: _, len } => len,
            _ => panic!("wrong state to call `skip_section`"),
        };
        self.offset += u64::from(skip);
        self.max_size -= u64::from(skip);
        self.state = State::SectionStart;
    }
}

fn usize_to_u64(a: usize) -> u64 {
    a.try_into().unwrap()
}

/// Parses an entire section resident in memory into a `Payload`.
///
/// Requires that `len` bytes are resident in `reader` and uses `ctor`/`variant`
/// to construct the section to return.
fn section<'a, T>(
    reader: &mut BinaryReader<'a>,
    len: u32,
    ctor: fn(&'a [u8], usize) -> Result<T>,
    variant: fn(T) -> Payload<'a>,
) -> Result<Payload<'a>> {
    let offset = reader.original_position();
    let payload = reader.read_bytes(len as usize)?;
    // clear the hint for "need this many more bytes" here because we already
    // read all the bytes, so it's not possible to read more bytes if this
    // fails.
    let reader = ctor(payload, offset).map_err(clear_hint)?;
    Ok(variant(reader))
}

/// Creates a new `BinaryReader` from the given `reader` which will be reading
/// the first `len` bytes.
///
/// This means that `len` bytes must be resident in memory at the time of this
/// reading.
fn subreader<'a>(reader: &mut BinaryReader<'a>, len: u32) -> Result<BinaryReader<'a>> {
    let offset = reader.original_position();
    let payload = reader.read_bytes(len as usize)?;
    Ok(BinaryReader::new_with_offset(payload, offset))
}

/// Reads a section that is represented by a single uleb-encoded `u32`.
fn single_u32<'a>(reader: &mut BinaryReader<'a>, len: u32, desc: &str) -> Result<(u32, Range)> {
    let range = Range {
        start: reader.original_position(),
        end: reader.original_position() + len as usize,
    };
    let mut content = subreader(reader, len)?;
    // We can't recover from "unexpected eof" here because our entire section is
    // already resident in memory, so clear the hint for how many more bytes are
    // expected.
    let index = content.read_var_u32().map_err(clear_hint)?;
    if !content.eof() {
        return Err(BinaryReaderError::new(
            format!("Unexpected content in the {} section", desc),
            content.original_position(),
        ));
    }
    Ok((index, range))
}

/// Attempts to parse using `f`.
///
/// This will update `*len` with the number of bytes consumed, and it will cause
/// a failure to be returned instead of the number of bytes consumed exceeds
/// what `*len` currently is.
fn delimited<'a, T>(
    reader: &mut BinaryReader<'a>,
    len: &mut u32,
    f: impl FnOnce(&mut BinaryReader<'a>) -> Result<T>,
) -> Result<T> {
    let start = reader.position;
    let ret = f(reader)?;
    *len = match (reader.position - start)
        .try_into()
        .ok()
        .and_then(|i| len.checked_sub(i))
    {
        Some(i) => i,
        None => return Err(BinaryReaderError::new("Unexpected EOF", start)),
    };
    Ok(ret)
}

impl Default for Parser {
    fn default() -> Parser {
        Parser::new(0)
    }
}

impl fmt::Debug for Payload<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use Payload::*;
        match self {
            CustomSection {
                name,
                data_offset,
                data: _,
            } => f
                .debug_struct("CustomSection")
                .field("name", name)
                .field("data_offset", data_offset)
                .field("data", &"...")
                .finish(),
            Version { num, range } => f
                .debug_struct("Version")
                .field("num", num)
                .field("range", range)
                .finish(),
            TypeSection(_) => f.debug_tuple("TypeSection").field(&"...").finish(),
            ImportSection(_) => f.debug_tuple("ImportSection").field(&"...").finish(),
            AliasSection(_) => f.debug_tuple("AliasSection").field(&"...").finish(),
            InstanceSection(_) => f.debug_tuple("InstanceSection").field(&"...").finish(),
            FunctionSection(_) => f.debug_tuple("FunctionSection").field(&"...").finish(),
            TableSection(_) => f.debug_tuple("TableSection").field(&"...").finish(),
            MemorySection(_) => f.debug_tuple("MemorySection").field(&"...").finish(),
            EventSection(_) => f.debug_tuple("EventSection").field(&"...").finish(),
            GlobalSection(_) => f.debug_tuple("GlobalSection").field(&"...").finish(),
            ExportSection(_) => f.debug_tuple("ExportSection").field(&"...").finish(),
            ElementSection(_) => f.debug_tuple("ElementSection").field(&"...").finish(),
            DataSection(_) => f.debug_tuple("DataSection").field(&"...").finish(),
            StartSection { func, range } => f
                .debug_struct("StartSection")
                .field("func", func)
                .field("range", range)
                .finish(),
            DataCountSection { count, range } => f
                .debug_struct("DataCountSection")
                .field("count", count)
                .field("range", range)
                .finish(),
            CodeSectionStart { count, range, size } => f
                .debug_struct("CodeSectionStart")
                .field("count", count)
                .field("range", range)
                .field("size", size)
                .finish(),
            CodeSectionEntry(_) => f.debug_tuple("CodeSectionEntry").field(&"...").finish(),
            ModuleSectionStart { count, range, size } => f
                .debug_struct("ModuleSectionStart")
                .field("count", count)
                .field("range", range)
                .field("size", size)
                .finish(),
            ModuleSectionEntry { parser: _, range } => f
                .debug_struct("ModuleSectionEntry")
                .field("range", range)
                .finish(),
            UnknownSection { id, range, .. } => f
                .debug_struct("UnknownSection")
                .field("id", id)
                .field("range", range)
                .finish(),
            End => f.write_str("End"),
        }
    }
}

fn clear_hint(mut err: BinaryReaderError) -> BinaryReaderError {
    err.inner.needed_hint = None;
    err
}

#[cfg(test)]
mod tests {
    use super::*;

    macro_rules! assert_matches {
        ($a:expr, $b:pat $(,)?) => {
            match $a {
                $b => {}
                a => panic!("`{:?}` doesn't match `{}`", a, stringify!($b)),
            }
        };
    }

    #[test]
    fn header() {
        assert!(Parser::default().parse(&[], true).is_err());
        assert_matches!(
            Parser::default().parse(&[], false),
            Ok(Chunk::NeedMoreData(4)),
        );
        assert_matches!(
            Parser::default().parse(b"\0", false),
            Ok(Chunk::NeedMoreData(3)),
        );
        assert_matches!(
            Parser::default().parse(b"\0asm", false),
            Ok(Chunk::NeedMoreData(4)),
        );
        assert_matches!(
            Parser::default().parse(b"\0asm\x01\0\0\0", false),
            Ok(Chunk::Parsed {
                consumed: 8,
                payload: Payload::Version { num: 1, .. },
            }),
        );
    }

    fn parser_after_header() -> Parser {
        let mut p = Parser::default();
        assert_matches!(
            p.parse(b"\0asm\x01\0\0\0", false),
            Ok(Chunk::Parsed {
                consumed: 8,
                payload: Payload::Version { num: 1, .. },
            }),
        );
        return p;
    }

    #[test]
    fn start_section() {
        assert_matches!(
            parser_after_header().parse(&[], false),
            Ok(Chunk::NeedMoreData(1)),
        );
        assert!(parser_after_header().parse(&[8], true).is_err());
        assert!(parser_after_header().parse(&[8, 1], true).is_err());
        assert!(parser_after_header().parse(&[8, 2], true).is_err());
        assert_matches!(
            parser_after_header().parse(&[8], false),
            Ok(Chunk::NeedMoreData(1)),
        );
        assert_matches!(
            parser_after_header().parse(&[8, 1], false),
            Ok(Chunk::NeedMoreData(1)),
        );
        assert_matches!(
            parser_after_header().parse(&[8, 2], false),
            Ok(Chunk::NeedMoreData(2)),
        );
        assert_matches!(
            parser_after_header().parse(&[8, 1, 1], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::StartSection { func: 1, .. },
            }),
        );
        assert!(parser_after_header().parse(&[8, 2, 1, 1], false).is_err());
        assert!(parser_after_header().parse(&[8, 0], false).is_err());
    }

    #[test]
    fn end_works() {
        assert_matches!(
            parser_after_header().parse(&[], true),
            Ok(Chunk::Parsed {
                consumed: 0,
                payload: Payload::End,
            }),
        );
    }

    #[test]
    fn type_section() {
        assert!(parser_after_header().parse(&[1], true).is_err());
        assert!(parser_after_header().parse(&[1, 0], false).is_err());
        // assert!(parser_after_header().parse(&[8, 2], true).is_err());
        assert_matches!(
            parser_after_header().parse(&[1], false),
            Ok(Chunk::NeedMoreData(1)),
        );
        assert_matches!(
            parser_after_header().parse(&[1, 1], false),
            Ok(Chunk::NeedMoreData(1)),
        );
        assert_matches!(
            parser_after_header().parse(&[1, 1, 1], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::TypeSection(_),
            }),
        );
        assert_matches!(
            parser_after_header().parse(&[1, 1, 1, 2, 3, 4], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::TypeSection(_),
            }),
        );
    }

    #[test]
    fn custom_section() {
        assert!(parser_after_header().parse(&[0], true).is_err());
        assert!(parser_after_header().parse(&[0, 0], false).is_err());
        assert!(parser_after_header().parse(&[0, 1, 1], false).is_err());
        assert_matches!(
            parser_after_header().parse(&[0, 2, 1], false),
            Ok(Chunk::NeedMoreData(1)),
        );
        assert_matches!(
            parser_after_header().parse(&[0, 1, 0], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::CustomSection {
                    name: "",
                    data_offset: 11,
                    data: b"",
                },
            }),
        );
        assert_matches!(
            parser_after_header().parse(&[0, 2, 1, b'a'], false),
            Ok(Chunk::Parsed {
                consumed: 4,
                payload: Payload::CustomSection {
                    name: "a",
                    data_offset: 12,
                    data: b"",
                },
            }),
        );
        assert_matches!(
            parser_after_header().parse(&[0, 2, 0, b'a'], false),
            Ok(Chunk::Parsed {
                consumed: 4,
                payload: Payload::CustomSection {
                    name: "",
                    data_offset: 11,
                    data: b"a",
                },
            }),
        );
    }

    #[test]
    fn function_section() {
        assert!(parser_after_header().parse(&[10], true).is_err());
        assert!(parser_after_header().parse(&[10, 0], true).is_err());
        assert!(parser_after_header().parse(&[10, 1], true).is_err());
        assert_matches!(
            parser_after_header().parse(&[10], false),
            Ok(Chunk::NeedMoreData(1))
        );
        assert_matches!(
            parser_after_header().parse(&[10, 1], false),
            Ok(Chunk::NeedMoreData(1))
        );
        let mut p = parser_after_header();
        assert_matches!(
            p.parse(&[10, 1, 0], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::CodeSectionStart { count: 0, .. },
            }),
        );
        assert_matches!(
            p.parse(&[], true),
            Ok(Chunk::Parsed {
                consumed: 0,
                payload: Payload::End,
            }),
        );
        let mut p = parser_after_header();
        assert_matches!(
            p.parse(&[10, 2, 1, 0], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::CodeSectionStart { count: 1, .. },
            }),
        );
        assert_matches!(
            p.parse(&[0], false),
            Ok(Chunk::Parsed {
                consumed: 1,
                payload: Payload::CodeSectionEntry(_),
            }),
        );
        assert_matches!(
            p.parse(&[], true),
            Ok(Chunk::Parsed {
                consumed: 0,
                payload: Payload::End,
            }),
        );

        // 1 byte section with 1 function can't read the function body because
        // the section is too small
        let mut p = parser_after_header();
        assert_matches!(
            p.parse(&[10, 1, 1], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::CodeSectionStart { count: 1, .. },
            }),
        );
        assert_eq!(
            p.parse(&[0], false).unwrap_err().message(),
            "Unexpected EOF"
        );

        // section with 2 functions but section is cut off
        let mut p = parser_after_header();
        assert_matches!(
            p.parse(&[10, 2, 2], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::CodeSectionStart { count: 2, .. },
            }),
        );
        assert_matches!(
            p.parse(&[0], false),
            Ok(Chunk::Parsed {
                consumed: 1,
                payload: Payload::CodeSectionEntry(_),
            }),
        );
        assert_matches!(p.parse(&[], false), Ok(Chunk::NeedMoreData(1)));
        assert_eq!(
            p.parse(&[0], false).unwrap_err().message(),
            "Unexpected EOF",
        );

        // trailing data is bad
        let mut p = parser_after_header();
        assert_matches!(
            p.parse(&[10, 3, 1], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::CodeSectionStart { count: 1, .. },
            }),
        );
        assert_matches!(
            p.parse(&[0], false),
            Ok(Chunk::Parsed {
                consumed: 1,
                payload: Payload::CodeSectionEntry(_),
            }),
        );
        assert_eq!(
            p.parse(&[0], false).unwrap_err().message(),
            "trailing bytes at end of section",
        );
    }

    #[test]
    fn module_code_errors() {
        // no bytes to say size of section
        assert!(parser_after_header().parse(&[14], true).is_err());
        // section must start with a u32
        assert!(parser_after_header().parse(&[14, 0], true).is_err());
        // EOF before we finish reading the section
        assert!(parser_after_header().parse(&[14, 1], true).is_err());
    }

    #[test]
    fn module_code_one() {
        let mut p = parser_after_header();
        assert_matches!(p.parse(&[14], false), Ok(Chunk::NeedMoreData(1)));
        assert_matches!(p.parse(&[14, 9], false), Ok(Chunk::NeedMoreData(1)));
        // Module code section, 10 bytes large, one module.
        assert_matches!(
            p.parse(&[14, 10, 1], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::ModuleSectionStart { count: 1, .. },
            })
        );
        // Declare an empty module, which will be 8 bytes large for the header.
        // Switch to the sub-parser on success.
        let mut sub = match p.parse(&[8], false) {
            Ok(Chunk::Parsed {
                consumed: 1,
                payload: Payload::ModuleSectionEntry { parser, .. },
            }) => parser,
            other => panic!("bad parse {:?}", other),
        };

        // Parse the header of the submodule with the sub-parser.
        assert_matches!(sub.parse(&[], false), Ok(Chunk::NeedMoreData(4)));
        assert_matches!(sub.parse(b"\0asm", false), Ok(Chunk::NeedMoreData(4)));
        assert_matches!(
            sub.parse(b"\0asm\x01\0\0\0", false),
            Ok(Chunk::Parsed {
                consumed: 8,
                payload: Payload::Version { num: 1, .. },
            }),
        );

        // The sub-parser should be byte-limited so the next byte shouldn't get
        // consumed, it's intended for the parent parser.
        assert_matches!(
            sub.parse(&[10], false),
            Ok(Chunk::Parsed {
                consumed: 0,
                payload: Payload::End,
            }),
        );

        // The parent parser should now be back to resuming, and we simulate it
        // being done with bytes to ensure that it's safely at the end,
        // completing the module code section.
        assert_matches!(p.parse(&[], false), Ok(Chunk::NeedMoreData(1)));
        assert_matches!(
            p.parse(&[], true),
            Ok(Chunk::Parsed {
                consumed: 0,
                payload: Payload::End,
            }),
        );
    }

    #[test]
    fn nested_section_too_big() {
        let mut p = parser_after_header();
        // Module code section, 12 bytes large, one module. This leaves 11 bytes
        // of payload for the module definition itself.
        assert_matches!(
            p.parse(&[14, 12, 1], false),
            Ok(Chunk::Parsed {
                consumed: 3,
                payload: Payload::ModuleSectionStart { count: 1, .. },
            })
        );
        // Use one byte to say we're a 10 byte module, which fits exactly within
        // our module code section.
        let mut sub = match p.parse(&[10], false) {
            Ok(Chunk::Parsed {
                consumed: 1,
                payload: Payload::ModuleSectionEntry { parser, .. },
            }) => parser,
            other => panic!("bad parse {:?}", other),
        };

        // use 8 bytes to parse the header, leaving 2 remaining bytes in our
        // module.
        assert_matches!(
            sub.parse(b"\0asm\x01\0\0\0", false),
            Ok(Chunk::Parsed {
                consumed: 8,
                payload: Payload::Version { num: 1, .. },
            }),
        );

        // We can't parse a section which declares its bigger than the outer
        // module. This is section 1, one byte big, with one content byte. The
        // content byte, however, lives outside of the parent's module code
        // section.
        assert_eq!(
            sub.parse(&[1, 1, 0], false).unwrap_err().message(),
            "section too large",
        );
    }
}