1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
// This file contains code from external sources.
// Attributions: https://github.com/wasmerio/wasmer/blob/master/ATTRIBUTIONS.md

//! This file declares `VMContext` and several related structs which contain
//! fields that compiled wasm code accesses directly.

use crate::global::Global;
use crate::instance::Instance;
use crate::memory::Memory;
use crate::table::Table;
use crate::trap::{Trap, TrapCode};
use std::any::Any;
use std::convert::TryFrom;
use std::fmt;
use std::ptr::{self, NonNull};
use std::sync::Arc;
use std::u32;

/// Union representing the first parameter passed when calling a function.
///
/// It may either be a pointer to the [`VMContext`] if it's a Wasm function
/// or a pointer to arbitrary data controlled by the host if it's a host function.
#[derive(Copy, Clone)]
pub union VMFunctionEnvironment {
    /// Wasm functions take a pointer to [`VMContext`].
    pub vmctx: *mut VMContext,
    /// Host functions can have custom environments.
    pub host_env: *mut std::ffi::c_void,
}

impl VMFunctionEnvironment {
    /// Check whether the pointer stored is null or not.
    pub fn is_null(&self) -> bool {
        unsafe { self.host_env.is_null() }
    }
}

impl std::fmt::Debug for VMFunctionEnvironment {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("VMFunctionEnvironment")
            .field("vmctx_or_hostenv", unsafe { &self.host_env })
            .finish()
    }
}

impl std::cmp::PartialEq for VMFunctionEnvironment {
    fn eq(&self, rhs: &Self) -> bool {
        unsafe { self.host_env as usize == rhs.host_env as usize }
    }
}

/// An imported function.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMFunctionImport {
    /// A pointer to the imported function body.
    pub body: *const VMFunctionBody,

    /// A pointer to the `VMContext` that owns the function or host env data.
    pub environment: VMFunctionEnvironment,
}

#[cfg(test)]
mod test_vmfunction_import {
    use super::VMFunctionImport;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmfunction_import_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMFunctionImport>(),
            usize::from(offsets.size_of_vmfunction_import())
        );
        assert_eq!(
            offset_of!(VMFunctionImport, body),
            usize::from(offsets.vmfunction_import_body())
        );
        assert_eq!(
            offset_of!(VMFunctionImport, environment),
            usize::from(offsets.vmfunction_import_vmctx())
        );
    }
}

/// The `VMDynamicFunctionContext` is the context that dynamic
/// functions will receive when called (rather than `vmctx`).
/// A dynamic function is a function for which we don't know the signature
/// until runtime.
///
/// As such, we need to expose the dynamic function `context`
/// containing the relevant context for running the function indicated
/// in `address`.
#[repr(C)]
pub struct VMDynamicFunctionContext<T: Sized + Send + Sync> {
    /// The address of the inner dynamic function.
    ///
    /// Note: The function must be on the form of
    /// `(*mut T, SignatureIndex, *mut i128)`.
    pub address: *const VMFunctionBody,

    /// The context that the inner dynamic function will receive.
    pub ctx: T,
}

// The `ctx` itself must be `Send`, `address` can be passed between
// threads because all usage is `unsafe` and synchronized.
unsafe impl<T: Sized + Send + Sync> Send for VMDynamicFunctionContext<T> {}
// The `ctx` itself must be `Sync`, `address` can be shared between
// threads because all usage is `unsafe` and synchronized.
unsafe impl<T: Sized + Send + Sync> Sync for VMDynamicFunctionContext<T> {}

impl<T: Sized + Clone + Send + Sync> Clone for VMDynamicFunctionContext<T> {
    fn clone(&self) -> Self {
        Self {
            address: self.address,
            ctx: self.ctx.clone(),
        }
    }
}

#[cfg(test)]
mod test_vmdynamicfunction_import_context {
    use super::VMDynamicFunctionContext;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmdynamicfunction_import_context_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMDynamicFunctionContext<usize>>(),
            usize::from(offsets.size_of_vmdynamicfunction_import_context())
        );
        assert_eq!(
            offset_of!(VMDynamicFunctionContext<usize>, address),
            usize::from(offsets.vmdynamicfunction_import_context_address())
        );
        assert_eq!(
            offset_of!(VMDynamicFunctionContext<usize>, ctx),
            usize::from(offsets.vmdynamicfunction_import_context_ctx())
        );
    }
}

/// A placeholder byte-sized type which is just used to provide some amount of type
/// safety when dealing with pointers to JIT-compiled function bodies. Note that it's
/// deliberately not Copy, as we shouldn't be carelessly copying function body bytes
/// around.
#[repr(C)]
pub struct VMFunctionBody(u8);

#[cfg(test)]
mod test_vmfunction_body {
    use super::VMFunctionBody;
    use std::mem::size_of;

    #[test]
    fn check_vmfunction_body_offsets() {
        assert_eq!(size_of::<VMFunctionBody>(), 1);
    }
}

/// A function kind is a calling convention into and out of wasm code.
#[derive(Debug, Copy, Clone, PartialEq)]
#[repr(C)]
pub enum VMFunctionKind {
    /// A static function has the native signature:
    /// `extern "C" (vmctx, arg1, arg2...) -> (result1, result2, ...)`.
    ///
    /// This is the default for functions that are defined:
    /// 1. In the Host, natively
    /// 2. In the WebAssembly file
    Static,

    /// A dynamic function has the native signature:
    /// `extern "C" (ctx, &[Value]) -> Vec<Value>`.
    ///
    /// This is the default for functions that are defined:
    /// 1. In the Host, dynamically
    Dynamic,
}

/// The fields compiled code needs to access to utilize a WebAssembly table
/// imported from another instance.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct VMTableImport {
    /// A pointer to the imported table description.
    pub definition: NonNull<VMTableDefinition>,

    /// A pointer to the `Table` that owns the table description.
    pub from: Arc<dyn Table>,
}

#[cfg(test)]
mod test_vmtable_import {
    use super::VMTableImport;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmtable_import_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMTableImport>(),
            usize::from(offsets.size_of_vmtable_import())
        );
        assert_eq!(
            offset_of!(VMTableImport, definition),
            usize::from(offsets.vmtable_import_definition())
        );
        assert_eq!(
            offset_of!(VMTableImport, from),
            usize::from(offsets.vmtable_import_from())
        );
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly linear
/// memory imported from another instance.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct VMMemoryImport {
    /// A pointer to the imported memory description.
    pub definition: NonNull<VMMemoryDefinition>,

    /// A pointer to the `Memory` that owns the memory description.
    pub from: Arc<dyn Memory>,
}

#[cfg(test)]
mod test_vmmemory_import {
    use super::VMMemoryImport;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmmemory_import_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMMemoryImport>(),
            usize::from(offsets.size_of_vmmemory_import())
        );
        assert_eq!(
            offset_of!(VMMemoryImport, definition),
            usize::from(offsets.vmmemory_import_definition())
        );
        assert_eq!(
            offset_of!(VMMemoryImport, from),
            usize::from(offsets.vmmemory_import_from())
        );
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly global
/// variable imported from another instance.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct VMGlobalImport {
    /// A pointer to the imported global variable description.
    pub definition: NonNull<VMGlobalDefinition>,

    /// A pointer to the `Global` that owns the global description.
    pub from: Arc<Global>,
}

/// # Safety
/// This data is safe to share between threads because it's plain data that
/// is the user's responsibility to synchronize. Additionally, all operations
/// on `from` are thread-safe through the use of a mutex in [`Global`].
unsafe impl Send for VMGlobalImport {}
/// # Safety
/// This data is safe to share between threads because it's plain data that
/// is the user's responsibility to synchronize. And because it's `Clone`, there's
/// really no difference between passing it by reference or by value as far as
/// correctness in a multi-threaded context is concerned.
unsafe impl Sync for VMGlobalImport {}

#[cfg(test)]
mod test_vmglobal_import {
    use super::VMGlobalImport;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmglobal_import_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMGlobalImport>(),
            usize::from(offsets.size_of_vmglobal_import())
        );
        assert_eq!(
            offset_of!(VMGlobalImport, definition),
            usize::from(offsets.vmglobal_import_definition())
        );
        assert_eq!(
            offset_of!(VMGlobalImport, from),
            usize::from(offsets.vmglobal_import_from())
        );
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly linear
/// memory defined within the instance, namely the start address and the
/// size in bytes.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMMemoryDefinition {
    /// The start address which is always valid, even if the memory grows.
    pub base: *mut u8,

    /// The current logical size of this linear memory in bytes.
    pub current_length: u32,
}

/// # Safety
/// This data is safe to share between threads because it's plain data that
/// is the user's responsibility to synchronize.
unsafe impl Send for VMMemoryDefinition {}
/// # Safety
/// This data is safe to share between threads because it's plain data that
/// is the user's responsibility to synchronize. And it's `Copy` so there's
/// really no difference between passing it by reference or by value as far as
/// correctness in a multi-threaded context is concerned.
unsafe impl Sync for VMMemoryDefinition {}

impl VMMemoryDefinition {
    /// Do an unsynchronized, non-atomic `memory.copy` for the memory.
    ///
    /// # Errors
    ///
    /// Returns a `Trap` error when the source or destination ranges are out of
    /// bounds.
    ///
    /// # Safety
    /// The memory is not copied atomically and is not synchronized: it's the
    /// caller's responsibility to synchronize.
    pub(crate) unsafe fn memory_copy(&self, dst: u32, src: u32, len: u32) -> Result<(), Trap> {
        // https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-memory-copy
        if src
            .checked_add(len)
            .map_or(true, |n| n > self.current_length)
            || dst
                .checked_add(len)
                .map_or(true, |m| m > self.current_length)
        {
            return Err(Trap::new_from_runtime(TrapCode::HeapAccessOutOfBounds));
        }

        let dst = usize::try_from(dst).unwrap();
        let src = usize::try_from(src).unwrap();

        // Bounds and casts are checked above, by this point we know that
        // everything is safe.
        let dst = self.base.add(dst);
        let src = self.base.add(src);
        ptr::copy(src, dst, len as usize);

        Ok(())
    }

    /// Perform the `memory.fill` operation for the memory in an unsynchronized,
    /// non-atomic way.
    ///
    /// # Errors
    ///
    /// Returns a `Trap` error if the memory range is out of bounds.
    ///
    /// # Safety
    /// The memory is not filled atomically and is not synchronized: it's the
    /// caller's responsibility to synchronize.
    pub(crate) unsafe fn memory_fill(&self, dst: u32, val: u32, len: u32) -> Result<(), Trap> {
        if dst
            .checked_add(len)
            .map_or(true, |m| m > self.current_length)
        {
            return Err(Trap::new_from_runtime(TrapCode::HeapAccessOutOfBounds));
        }

        let dst = isize::try_from(dst).unwrap();
        let val = val as u8;

        // Bounds and casts are checked above, by this point we know that
        // everything is safe.
        let dst = self.base.offset(dst);
        ptr::write_bytes(dst, val, len as usize);

        Ok(())
    }
}

#[cfg(test)]
mod test_vmmemory_definition {
    use super::VMMemoryDefinition;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmmemory_definition_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMMemoryDefinition>(),
            usize::from(offsets.size_of_vmmemory_definition())
        );
        assert_eq!(
            offset_of!(VMMemoryDefinition, base),
            usize::from(offsets.vmmemory_definition_base())
        );
        assert_eq!(
            offset_of!(VMMemoryDefinition, current_length),
            usize::from(offsets.vmmemory_definition_current_length())
        );
        /* TODO: Assert that the size of `current_length` matches.
        assert_eq!(
            size_of::<VMMemoryDefinition::current_length>(),
            usize::from(offsets.size_of_vmmemory_definition_current_length())
        );
        */
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly table
/// defined within the instance.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct VMTableDefinition {
    /// Pointer to the table data.
    pub base: *mut u8,

    /// The current number of elements in the table.
    pub current_elements: u32,
}

#[cfg(test)]
mod test_vmtable_definition {
    use super::VMTableDefinition;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmtable_definition_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMTableDefinition>(),
            usize::from(offsets.size_of_vmtable_definition())
        );
        assert_eq!(
            offset_of!(VMTableDefinition, base),
            usize::from(offsets.vmtable_definition_base())
        );
        assert_eq!(
            offset_of!(VMTableDefinition, current_elements),
            usize::from(offsets.vmtable_definition_current_elements())
        );
    }
}

/// A typesafe wrapper around the storage for a global variables.
///
/// # Safety
///
/// Accessing the different members of this union is always safe because there
/// are no invalid values for any of the types and the whole object is
/// initialized by VMGlobalDefinition::new().
#[derive(Clone, Copy)]
#[repr(C, align(16))]
pub union VMGlobalDefinitionStorage {
    as_i32: i32,
    as_u32: u32,
    as_f32: f32,
    as_i64: i64,
    as_u64: u64,
    as_f64: f64,
    as_u128: u128,
    bytes: [u8; 16],
}

impl fmt::Debug for VMGlobalDefinitionStorage {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("VMGlobalDefinitionStorage")
            .field("bytes", unsafe { &self.bytes })
            .finish()
    }
}

/// The storage for a WebAssembly global defined within the instance.
///
/// TODO: Pack the globals more densely, rather than using the same size
/// for every type.
#[derive(Debug, Clone)]
#[repr(C, align(16))]
pub struct VMGlobalDefinition {
    storage: VMGlobalDefinitionStorage,
    // If more elements are added here, remember to add offset_of tests below!
}

#[cfg(test)]
mod test_vmglobal_definition {
    use super::VMGlobalDefinition;
    use crate::{ModuleInfo, VMOffsets};
    use more_asserts::assert_ge;
    use std::mem::{align_of, size_of};

    #[test]
    fn check_vmglobal_definition_alignment() {
        assert_ge!(align_of::<VMGlobalDefinition>(), align_of::<i32>());
        assert_ge!(align_of::<VMGlobalDefinition>(), align_of::<i64>());
        assert_ge!(align_of::<VMGlobalDefinition>(), align_of::<f32>());
        assert_ge!(align_of::<VMGlobalDefinition>(), align_of::<f64>());
        assert_ge!(align_of::<VMGlobalDefinition>(), align_of::<[u8; 16]>());
    }

    #[test]
    fn check_vmglobal_definition_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<*const VMGlobalDefinition>(),
            usize::from(offsets.size_of_vmglobal_local())
        );
    }

    #[test]
    fn check_vmglobal_begins_aligned() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(offsets.vmctx_globals_begin() % 16, 0);
    }
}

impl VMGlobalDefinition {
    /// Construct a `VMGlobalDefinition`.
    pub fn new() -> Self {
        Self {
            storage: VMGlobalDefinitionStorage { bytes: [0; 16] },
        }
    }

    /// Return the value as an i32.
    ///
    /// If this is not an I32 typed global it is unspecified what value is returned.
    pub fn to_i32(&self) -> i32 {
        unsafe { self.storage.as_i32 }
    }

    /// Return a mutable reference to the value as an i32.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has I32 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_i32_mut(&mut self) -> &mut i32 {
        &mut self.storage.as_i32
    }

    /// Return a reference to the value as an u32.
    ///
    /// If this is not an I32 typed global it is unspecified what value is returned.
    pub fn to_u32(&self) -> u32 {
        unsafe { self.storage.as_u32 }
    }

    /// Return a mutable reference to the value as an u32.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has I32 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_u32_mut(&mut self) -> &mut u32 {
        &mut self.storage.as_u32
    }

    /// Return a reference to the value as an i64.
    ///
    /// If this is not an I64 typed global it is unspecified what value is returned.
    pub fn to_i64(&self) -> i64 {
        unsafe { self.storage.as_i64 }
    }

    /// Return a mutable reference to the value as an i64.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has I32 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_i64_mut(&mut self) -> &mut i64 {
        &mut self.storage.as_i64
    }

    /// Return a reference to the value as an u64.
    ///
    /// If this is not an I64 typed global it is unspecified what value is returned.
    pub fn to_u64(&self) -> u64 {
        unsafe { self.storage.as_u64 }
    }

    /// Return a mutable reference to the value as an u64.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has I64 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_u64_mut(&mut self) -> &mut u64 {
        &mut self.storage.as_u64
    }

    /// Return a reference to the value as an f32.
    ///
    /// If this is not an F32 typed global it is unspecified what value is returned.
    pub fn to_f32(&self) -> f32 {
        unsafe { self.storage.as_f32 }
    }

    /// Return a mutable reference to the value as an f32.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has F32 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_f32_mut(&mut self) -> &mut f32 {
        &mut self.storage.as_f32
    }

    /// Return a reference to the value as an f64.
    ///
    /// If this is not an F64 typed global it is unspecified what value is returned.
    pub fn to_f64(&self) -> f64 {
        unsafe { self.storage.as_f64 }
    }

    /// Return a mutable reference to the value as an f64.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has F64 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_f64_mut(&mut self) -> &mut f64 {
        &mut self.storage.as_f64
    }

    /// Return a reference to the value as an u128.
    ///
    /// If this is not an V128 typed global it is unspecified what value is returned.
    pub fn to_u128(&self) -> u128 {
        unsafe { self.storage.as_u128 }
    }

    /// Return a mutable reference to the value as an u128.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to make sure the global has V128 type.
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_u128_mut(&mut self) -> &mut u128 {
        &mut self.storage.as_u128
    }

    /// Return a reference to the value as bytes.
    pub fn to_bytes(&self) -> [u8; 16] {
        unsafe { self.storage.bytes }
    }

    /// Return a mutable reference to the value as bytes.
    ///
    /// # Safety
    ///
    /// Until the returned borrow is dropped, reads and writes of this global
    /// must be done exclusively through this borrow. That includes reads and
    /// writes of globals inside wasm functions.
    pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8; 16] {
        &mut self.storage.bytes
    }
}

/// An index into the shared signature registry, usable for checking signatures
/// at indirect calls.
#[repr(C)]
#[derive(Debug, Eq, PartialEq, Clone, Copy, Hash)]
pub struct VMSharedSignatureIndex(u32);

#[cfg(test)]
mod test_vmshared_signature_index {
    use super::VMSharedSignatureIndex;
    use crate::module::ModuleInfo;
    use crate::vmoffsets::{TargetSharedSignatureIndex, VMOffsets};
    use std::mem::size_of;

    #[test]
    fn check_vmshared_signature_index() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMSharedSignatureIndex>(),
            usize::from(offsets.size_of_vmshared_signature_index())
        );
    }

    #[test]
    fn check_target_shared_signature_index() {
        assert_eq!(
            size_of::<VMSharedSignatureIndex>(),
            size_of::<TargetSharedSignatureIndex>()
        );
    }
}

impl VMSharedSignatureIndex {
    /// Create a new `VMSharedSignatureIndex`.
    pub fn new(value: u32) -> Self {
        Self(value)
    }
}

impl Default for VMSharedSignatureIndex {
    fn default() -> Self {
        Self::new(u32::MAX)
    }
}

/// The VM caller-checked "anyfunc" record, for caller-side signature checking.
/// It consists of the actual function pointer and a signature id to be checked
/// by the caller.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct VMCallerCheckedAnyfunc {
    /// Function body.
    pub func_ptr: *const VMFunctionBody,
    /// Function signature id.
    pub type_index: VMSharedSignatureIndex,
    /// Function `VMContext` or host env.
    pub vmctx: VMFunctionEnvironment,
    // If more elements are added here, remember to add offset_of tests below!
}

#[cfg(test)]
mod test_vmcaller_checked_anyfunc {
    use super::VMCallerCheckedAnyfunc;
    use crate::{ModuleInfo, VMOffsets};
    use memoffset::offset_of;
    use std::mem::size_of;

    #[test]
    fn check_vmcaller_checked_anyfunc_offsets() {
        let module = ModuleInfo::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMCallerCheckedAnyfunc>(),
            usize::from(offsets.size_of_vmcaller_checked_anyfunc())
        );
        assert_eq!(
            offset_of!(VMCallerCheckedAnyfunc, func_ptr),
            usize::from(offsets.vmcaller_checked_anyfunc_func_ptr())
        );
        assert_eq!(
            offset_of!(VMCallerCheckedAnyfunc, type_index),
            usize::from(offsets.vmcaller_checked_anyfunc_type_index())
        );
        assert_eq!(
            offset_of!(VMCallerCheckedAnyfunc, vmctx),
            usize::from(offsets.vmcaller_checked_anyfunc_vmctx())
        );
    }
}

impl Default for VMCallerCheckedAnyfunc {
    fn default() -> Self {
        Self {
            func_ptr: ptr::null_mut(),
            type_index: Default::default(),
            vmctx: VMFunctionEnvironment {
                vmctx: ptr::null_mut(),
            },
        }
    }
}

/// An index type for builtin functions.
#[derive(Copy, Clone, Debug)]
pub struct VMBuiltinFunctionIndex(u32);

impl VMBuiltinFunctionIndex {
    /// Returns an index for wasm's `memory.grow` builtin function.
    pub const fn get_memory32_grow_index() -> Self {
        Self(0)
    }
    /// Returns an index for wasm's imported `memory.grow` builtin function.
    pub const fn get_imported_memory32_grow_index() -> Self {
        Self(1)
    }
    /// Returns an index for wasm's `memory.size` builtin function.
    pub const fn get_memory32_size_index() -> Self {
        Self(2)
    }
    /// Returns an index for wasm's imported `memory.size` builtin function.
    pub const fn get_imported_memory32_size_index() -> Self {
        Self(3)
    }
    /// Returns an index for wasm's `table.copy` when both tables are locally
    /// defined.
    pub const fn get_table_copy_index() -> Self {
        Self(4)
    }
    /// Returns an index for wasm's `table.init`.
    pub const fn get_table_init_index() -> Self {
        Self(5)
    }
    /// Returns an index for wasm's `elem.drop`.
    pub const fn get_elem_drop_index() -> Self {
        Self(6)
    }
    /// Returns an index for wasm's `memory.copy` for locally defined memories.
    pub const fn get_local_memory_copy_index() -> Self {
        Self(7)
    }
    /// Returns an index for wasm's `memory.copy` for imported memories.
    pub const fn get_imported_memory_copy_index() -> Self {
        Self(8)
    }
    /// Returns an index for wasm's `memory.fill` for locally defined memories.
    pub const fn get_memory_fill_index() -> Self {
        Self(9)
    }
    /// Returns an index for wasm's `memory.fill` for imported memories.
    pub const fn get_imported_memory_fill_index() -> Self {
        Self(10)
    }
    /// Returns an index for wasm's `memory.init` instruction.
    pub const fn get_memory_init_index() -> Self {
        Self(11)
    }
    /// Returns an index for wasm's `data.drop` instruction.
    pub const fn get_data_drop_index() -> Self {
        Self(12)
    }
    /// Returns an index for wasm's `raise_trap` instruction.
    pub const fn get_raise_trap_index() -> Self {
        Self(13)
    }
    /// Returns the total number of builtin functions.
    pub const fn builtin_functions_total_number() -> u32 {
        14
    }

    /// Return the index as an u32 number.
    pub const fn index(self) -> u32 {
        self.0
    }
}

/// An array that stores addresses of builtin functions. We translate code
/// to use indirect calls. This way, we don't have to patch the code.
#[repr(C)]
pub struct VMBuiltinFunctionsArray {
    ptrs: [usize; Self::len()],
}

impl VMBuiltinFunctionsArray {
    pub const fn len() -> usize {
        VMBuiltinFunctionIndex::builtin_functions_total_number() as usize
    }

    pub fn initialized() -> Self {
        use crate::libcalls::*;

        let mut ptrs = [0; Self::len()];

        ptrs[VMBuiltinFunctionIndex::get_memory32_grow_index().index() as usize] =
            wasmer_memory32_grow as usize;
        ptrs[VMBuiltinFunctionIndex::get_imported_memory32_grow_index().index() as usize] =
            wasmer_imported_memory32_grow as usize;

        ptrs[VMBuiltinFunctionIndex::get_memory32_size_index().index() as usize] =
            wasmer_memory32_size as usize;
        ptrs[VMBuiltinFunctionIndex::get_imported_memory32_size_index().index() as usize] =
            wasmer_imported_memory32_size as usize;

        ptrs[VMBuiltinFunctionIndex::get_table_copy_index().index() as usize] =
            wasmer_table_copy as usize;

        ptrs[VMBuiltinFunctionIndex::get_table_init_index().index() as usize] =
            wasmer_table_init as usize;
        ptrs[VMBuiltinFunctionIndex::get_elem_drop_index().index() as usize] =
            wasmer_elem_drop as usize;

        ptrs[VMBuiltinFunctionIndex::get_local_memory_copy_index().index() as usize] =
            wasmer_local_memory_copy as usize;
        ptrs[VMBuiltinFunctionIndex::get_imported_memory_copy_index().index() as usize] =
            wasmer_imported_memory_copy as usize;
        ptrs[VMBuiltinFunctionIndex::get_memory_fill_index().index() as usize] =
            wasmer_memory_fill as usize;
        ptrs[VMBuiltinFunctionIndex::get_imported_memory_fill_index().index() as usize] =
            wasmer_imported_memory_fill as usize;
        ptrs[VMBuiltinFunctionIndex::get_memory_init_index().index() as usize] =
            wasmer_memory_init as usize;
        ptrs[VMBuiltinFunctionIndex::get_data_drop_index().index() as usize] =
            wasmer_data_drop as usize;
        ptrs[VMBuiltinFunctionIndex::get_raise_trap_index().index() as usize] =
            wasmer_raise_trap as usize;

        debug_assert!(ptrs.iter().cloned().all(|p| p != 0));

        Self { ptrs }
    }
}

/// The VM "context", which is pointed to by the `vmctx` arg in the compiler.
/// This has information about globals, memories, tables, and other runtime
/// state associated with the current instance.
///
/// The struct here is empty, as the sizes of these fields are dynamic, and
/// we can't describe them in Rust's type system. Sufficient memory is
/// allocated at runtime.
///
/// TODO: We could move the globals into the `vmctx` allocation too.
#[derive(Debug)]
#[repr(C, align(16))] // align 16 since globals are aligned to that and contained inside
pub struct VMContext {}

impl VMContext {
    /// Return a mutable reference to the associated `Instance`.
    ///
    /// # Safety
    /// This is unsafe because it doesn't work on just any `VMContext`, it must
    /// be a `VMContext` allocated as part of an `Instance`.
    #[allow(clippy::cast_ptr_alignment)]
    #[inline]
    pub(crate) unsafe fn instance(&self) -> &Instance {
        &*((self as *const Self as *mut u8).offset(-Instance::vmctx_offset()) as *const Instance)
    }

    /// Return a reference to the host state associated with this `Instance`.
    ///
    /// # Safety
    /// This is unsafe because it doesn't work on just any `VMContext`, it must
    /// be a `VMContext` allocated as part of an `Instance`.
    #[inline]
    pub unsafe fn host_state(&self) -> &dyn Any {
        self.instance().host_state()
    }
}

///
pub type VMTrampoline = unsafe extern "C" fn(
    *mut VMContext,        // callee vmctx
    *const VMFunctionBody, // function we're actually calling
    *mut u128,             // space for arguments and return values
);