1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// This file contains code from external sources.
// Attributions: https://github.com/wasmerio/wasmer/blob/master/ATTRIBUTIONS.md

//! Memory management for executable code.
use crate::unwind::UnwindRegistry;
use std::mem::ManuallyDrop;
use std::sync::Arc;
use std::{cmp, mem};
use wasmer_compiler::{CompiledFunctionUnwindInfo, FunctionBody, SectionBody};
use wasmer_types::entity::{EntityRef, PrimaryMap};
use wasmer_vm::{FunctionBodyPtr, Mmap, VMFunctionBody};

/// The optimal alignment for functions.
///
/// On x86-64, this is 16 since it's what the optimizations assume.
/// When we add support for other architectures, we should also figure out their
/// optimal alignment values.
const ARCH_FUNCTION_ALIGNMENT: usize = 16;

struct CodeMemoryEntry {
    mmap: ManuallyDrop<Mmap>,
}

impl CodeMemoryEntry {
    fn new() -> Self {
        let mmap = ManuallyDrop::new(Mmap::new());
        Self { mmap }
    }
    fn with_capacity(cap: usize) -> Result<Self, String> {
        let mmap = ManuallyDrop::new(Mmap::with_at_least(cap)?);
        Ok(Self { mmap })
    }
}

impl Drop for CodeMemoryEntry {
    fn drop(&mut self) {
        unsafe {
            ManuallyDrop::drop(&mut self.mmap);
        }
    }
}

/// Memory manager for executable code.
pub struct CodeMemory {
    current: CodeMemoryEntry,
    entries: Vec<CodeMemoryEntry>,
    unwind_registries: Vec<Arc<UnwindRegistry>>,
    read_sections: Vec<Vec<u8>>,
    position: usize,
    published: usize,
}

impl CodeMemory {
    /// Create a new `CodeMemory` instance.
    pub fn new() -> Self {
        Self {
            current: CodeMemoryEntry::new(),
            entries: Vec::new(),
            read_sections: Vec::new(),
            unwind_registries: Vec::new(),
            position: 0,
            published: 0,
        }
    }

    /// Publish the unwind registry into code memory.
    pub(crate) fn publish_unwind_registry(&mut self, unwind_registry: Arc<UnwindRegistry>) {
        self.unwind_registries.push(unwind_registry);
    }

    /// Allocate a continuous memory block for a compilation.
    ///
    /// Allocates memory for both the function bodies as well as function unwind data.
    pub fn allocate_functions<K>(
        &mut self,
        registry: &mut UnwindRegistry,
        compilation: &PrimaryMap<K, FunctionBody>,
    ) -> Result<PrimaryMap<K, FunctionBodyPtr>, String>
    where
        K: EntityRef,
    {
        let total_len = compilation.values().fold(0, |acc, func| {
            acc + get_align_padding_size(acc, ARCH_FUNCTION_ALIGNMENT)
                + Self::function_allocation_size(func)
        });

        let (mut buf, start) = self.allocate(total_len, ARCH_FUNCTION_ALIGNMENT)?;
        let base_address = buf.as_ptr() as usize - start;
        let mut result = PrimaryMap::with_capacity(compilation.len());
        let mut start = start as u32;
        let mut padding = 0usize;
        for func in compilation.values() {
            let (next_start, next_buf, vmfunc) = Self::copy_function(
                registry,
                base_address,
                func,
                start + padding as u32,
                &mut buf[padding..],
            );
            assert!(vmfunc as *mut _ as *mut u8 as usize % ARCH_FUNCTION_ALIGNMENT == 0);

            result.push(FunctionBodyPtr(vmfunc as *mut [VMFunctionBody]));

            padding = get_align_padding_size(next_start as usize, ARCH_FUNCTION_ALIGNMENT);
            start = next_start;
            buf = next_buf;
        }

        Ok(result)
    }

    /// Allocate a continuous memory block for a single compiled function.
    /// TODO: Reorganize the code that calls this to emit code directly into the
    /// mmap region rather than into a Vec that we need to copy in.
    pub fn allocate_for_function(
        &mut self,
        registry: &mut UnwindRegistry,
        func: &FunctionBody,
    ) -> Result<&mut [VMFunctionBody], String> {
        let size = Self::function_allocation_size(func);

        let (buf, start) = self.allocate(size, ARCH_FUNCTION_ALIGNMENT)?;
        let base_address = buf.as_ptr() as usize - start;

        let (_, _, vmfunc) = Self::copy_function(registry, base_address, func, start as u32, buf);
        assert!(vmfunc as *mut _ as *mut u8 as usize % ARCH_FUNCTION_ALIGNMENT == 0);

        Ok(vmfunc)
    }

    /// Allocate a continuous memory block for an executable custom section.
    pub fn allocate_for_executable_custom_section(
        &mut self,
        section: &SectionBody,
    ) -> Result<&mut [u8], String> {
        let section = section.as_slice();
        let (buf, _) = self.allocate(section.len(), ARCH_FUNCTION_ALIGNMENT)?;
        buf.copy_from_slice(section);
        Ok(buf)
    }

    /// Allocate a continuous memory block for a readable custom section.
    pub fn allocate_for_custom_section(
        &mut self,
        section: &SectionBody,
    ) -> Result<&mut [u8], String> {
        let section = section.as_slice().to_vec();
        self.read_sections.push(section);
        Ok(self
            .read_sections
            .last_mut()
            .ok_or_else(|| "Can't get last section".to_string())?)
    }

    /// Make all allocated memory executable.
    pub fn publish(&mut self) {
        self.push_current(0)
            .expect("failed to push current memory map");

        for CodeMemoryEntry { mmap: m } in &mut self.entries[self.published..] {
            if !m.is_empty() {
                unsafe {
                    region::protect(m.as_mut_ptr(), m.len(), region::Protection::READ_EXECUTE)
                }
                .expect("unable to make memory readonly and executable");
            }
        }

        self.published = self.entries.len();
    }

    /// Allocate `size` bytes of memory which can be made executable later by
    /// calling `publish()`. Note that we allocate the memory as writeable so
    /// that it can be written to and patched, though we make it readonly before
    /// actually executing from it.
    ///
    /// A few values are returned:
    ///
    /// * A mutable slice which references the allocated memory
    /// * A function table instance where unwind information is registered
    /// * The offset within the current mmap that the slice starts at
    fn allocate(&mut self, size: usize, alignment: usize) -> Result<(&mut [u8], usize), String> {
        assert!(alignment > 0);

        let align_padding = get_align_padding_size(self.position, alignment);
        let padded_size = size + align_padding;

        let old_position;

        if self.current.mmap.len() - self.position < padded_size {
            // If we are allocating a new region, then it is already aligned to page boundary - no need to apply padding here.
            self.push_current(cmp::max(0x10000, size))?;
            old_position = 0;
            self.position += size;
        } else {
            // Otherwise, apply padding.
            old_position = self.position + align_padding;
            self.position += padded_size;
        }

        assert!(old_position % alignment == 0);

        Ok((
            &mut self.current.mmap.as_mut_slice()[old_position..self.position],
            old_position,
        ))
    }

    /// Calculates the allocation size of the given compiled function.
    fn function_allocation_size(func: &FunctionBody) -> usize {
        match &func.unwind_info {
            Some(CompiledFunctionUnwindInfo::WindowsX64(info)) => {
                // Windows unwind information is required to be emitted into code memory
                // This is because it must be a positive relative offset from the start of the memory
                // Account for necessary unwind information alignment padding (32-bit alignment)
                ((func.body.len() + 3) & !3) + info.len()
            }
            _ => func.body.len(),
        }
    }

    /// Copies the data of the compiled function to the given buffer.
    ///
    /// This will also add the function to the current function table.
    fn copy_function<'a>(
        registry: &mut UnwindRegistry,
        base_address: usize,
        func: &FunctionBody,
        func_start: u32,
        buf: &'a mut [u8],
    ) -> (u32, &'a mut [u8], &'a mut [VMFunctionBody]) {
        assert!((func_start as usize) % ARCH_FUNCTION_ALIGNMENT == 0);

        let func_len = func.body.len();
        let mut func_end = func_start + (func_len as u32);

        let (body, mut remainder) = buf.split_at_mut(func_len);
        body.copy_from_slice(&func.body);
        let vmfunc = Self::view_as_mut_vmfunc_slice(body);

        if let Some(CompiledFunctionUnwindInfo::WindowsX64(info)) = &func.unwind_info {
            // Windows unwind information is written following the function body
            // Keep unwind information 32-bit aligned (round up to the nearest 4 byte boundary)
            let unwind_start = (func_end + 3) & !3;
            let unwind_size = info.len();
            let padding = (unwind_start - func_end) as usize;
            assert_eq!((func_start as usize + func_len + padding) % 4, 0);
            let (slice, r) = remainder.split_at_mut(padding + unwind_size);
            slice[padding..].copy_from_slice(&info);
            // println!("Info {:?} (func_len: {}, padded: {})", info, func_len, padding);
            func_end = unwind_start + (unwind_size as u32);
            remainder = r;
        }

        if let Some(info) = &func.unwind_info {
            registry
                .register(base_address, func_start, func_len as u32, info)
                .expect("failed to register unwind information");
        }

        (func_end, remainder, vmfunc)
    }

    /// Convert mut a slice from u8 to VMFunctionBody.
    fn view_as_mut_vmfunc_slice(slice: &mut [u8]) -> &mut [VMFunctionBody] {
        let byte_ptr: *mut [u8] = slice;
        let body_ptr = byte_ptr as *mut [VMFunctionBody];
        unsafe { &mut *body_ptr }
    }

    /// Pushes the current Mmap and allocates a new Mmap of the given size.
    fn push_current(&mut self, new_size: usize) -> Result<(), String> {
        let previous = mem::replace(
            &mut self.current,
            if new_size == 0 {
                CodeMemoryEntry::new()
            } else {
                CodeMemoryEntry::with_capacity(cmp::max(0x10000, new_size))?
            },
        );

        if !previous.mmap.is_empty() {
            self.entries.push(previous);
        }

        self.position = 0;

        Ok(())
    }
}

/// Calculates the minimum number of padding bytes required to fulfill `alignment`.
fn get_align_padding_size(position: usize, alignment: usize) -> usize {
    match position % alignment {
        0 => 0,
        x => alignment - x,
    }
}

#[cfg(test)]
mod tests {
    use super::CodeMemory;
    fn _assert() {
        fn _assert_send_sync<T: Send + Sync>() {}
        _assert_send_sync::<CodeMemory>();
    }
}