1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
//! WebAssembly module and function translation state.
//!
//! The `ModuleTranslationState` struct defined in this module is used to keep track of data about
//! the whole WebAssembly module, such as the decoded type signatures.
//!
//! The `FuncTranslationState` struct defined in this module is used to keep track of the WebAssembly
//! value and control stacks during the translation of a single function.

use crate::environ::{FuncEnvironment, GlobalVariable, WasmResult};
use crate::translation_utils::{FuncIndex, GlobalIndex, MemoryIndex, SignatureIndex, TableIndex};
use crate::{HashMap, Occupied, Vacant};
use cranelift_codegen::ir::{self, Block, Inst, Value};
use std::vec::Vec;

/// Information about the presence of an associated `else` for an `if`, or the
/// lack thereof.
#[derive(Debug)]
pub enum ElseData {
    /// The `if` does not already have an `else` block.
    ///
    /// This doesn't mean that it will never have an `else`, just that we
    /// haven't seen it yet.
    NoElse {
        /// If we discover that we need an `else` block, this is the jump
        /// instruction that needs to be fixed up to point to the new `else`
        /// block rather than the destination block after the `if...end`.
        branch_inst: Inst,
    },

    /// We have already allocated an `else` block.
    ///
    /// Usually we don't know whether we will hit an `if .. end` or an `if
    /// .. else .. end`, but sometimes we can tell based on the block's type
    /// signature that the signature is not valid if there isn't an `else`. In
    /// these cases, we pre-allocate the `else` block.
    WithElse {
        /// This is the `else` block.
        else_block: Block,
    },
}

/// A control stack frame can be an `if`, a `block` or a `loop`, each one having the following
/// fields:
///
/// - `destination`: reference to the `Block` that will hold the code after the control block;
/// - `num_return_values`: number of values returned by the control block;
/// - `original_stack_size`: size of the value stack at the beginning of the control block.
///
/// Moreover, the `if` frame has the `branch_inst` field that points to the `brz` instruction
/// separating the `true` and `false` branch. The `loop` frame has a `header` field that references
/// the `Block` that contains the beginning of the body of the loop.
#[derive(Debug)]
pub enum ControlStackFrame {
    If {
        destination: Block,
        else_data: ElseData,
        num_param_values: usize,
        num_return_values: usize,
        original_stack_size: usize,
        exit_is_branched_to: bool,
        blocktype: wasmparser::TypeOrFuncType,
        /// Was the head of the `if` reachable?
        head_is_reachable: bool,
        /// What was the reachability at the end of the consequent?
        ///
        /// This is `None` until we're finished translating the consequent, and
        /// is set to `Some` either by hitting an `else` when we will begin
        /// translating the alternative, or by hitting an `end` in which case
        /// there is no alternative.
        consequent_ends_reachable: Option<bool>,
        // Note: no need for `alternative_ends_reachable` because that is just
        // `state.reachable` when we hit the `end` in the `if .. else .. end`.
    },
    Block {
        destination: Block,
        num_param_values: usize,
        num_return_values: usize,
        original_stack_size: usize,
        exit_is_branched_to: bool,
    },
    Loop {
        destination: Block,
        header: Block,
        num_param_values: usize,
        num_return_values: usize,
        original_stack_size: usize,
    },
}

/// Helper methods for the control stack objects.
impl ControlStackFrame {
    pub fn num_return_values(&self) -> usize {
        match *self {
            Self::If {
                num_return_values, ..
            }
            | Self::Block {
                num_return_values, ..
            }
            | Self::Loop {
                num_return_values, ..
            } => num_return_values,
        }
    }
    pub fn num_param_values(&self) -> usize {
        match *self {
            Self::If {
                num_param_values, ..
            }
            | Self::Block {
                num_param_values, ..
            }
            | Self::Loop {
                num_param_values, ..
            } => num_param_values,
        }
    }
    pub fn following_code(&self) -> Block {
        match *self {
            Self::If { destination, .. }
            | Self::Block { destination, .. }
            | Self::Loop { destination, .. } => destination,
        }
    }
    pub fn br_destination(&self) -> Block {
        match *self {
            Self::If { destination, .. } | Self::Block { destination, .. } => destination,
            Self::Loop { header, .. } => header,
        }
    }
    pub fn original_stack_size(&self) -> usize {
        match *self {
            Self::If {
                original_stack_size,
                ..
            }
            | Self::Block {
                original_stack_size,
                ..
            }
            | Self::Loop {
                original_stack_size,
                ..
            } => original_stack_size,
        }
    }
    pub fn is_loop(&self) -> bool {
        match *self {
            Self::If { .. } | Self::Block { .. } => false,
            Self::Loop { .. } => true,
        }
    }

    pub fn exit_is_branched_to(&self) -> bool {
        match *self {
            Self::If {
                exit_is_branched_to,
                ..
            }
            | Self::Block {
                exit_is_branched_to,
                ..
            } => exit_is_branched_to,
            Self::Loop { .. } => false,
        }
    }

    pub fn set_branched_to_exit(&mut self) {
        match *self {
            Self::If {
                ref mut exit_is_branched_to,
                ..
            }
            | Self::Block {
                ref mut exit_is_branched_to,
                ..
            } => *exit_is_branched_to = true,
            Self::Loop { .. } => {}
        }
    }
}

/// Contains information passed along during a function's translation and that records:
///
/// - The current value and control stacks.
/// - The depth of the two unreachable control blocks stacks, that are manipulated when translating
///   unreachable code;
pub struct FuncTranslationState {
    /// A stack of values corresponding to the active values in the input wasm function at this
    /// point.
    pub stack: Vec<Value>,
    /// A stack of active control flow operations at this point in the input wasm function.
    pub control_stack: Vec<ControlStackFrame>,
    /// Is the current translation state still reachable? This is false when translating operators
    /// like End, Return, or Unreachable.
    pub reachable: bool,

    // Map of global variables that have already been created by `FuncEnvironment::make_global`.
    globals: HashMap<GlobalIndex, GlobalVariable>,

    // Map of heaps that have been created by `FuncEnvironment::make_heap`.
    heaps: HashMap<MemoryIndex, ir::Heap>,

    // Map of tables that have been created by `FuncEnvironment::make_table`.
    tables: HashMap<TableIndex, ir::Table>,

    // Map of indirect call signatures that have been created by
    // `FuncEnvironment::make_indirect_sig()`.
    // Stores both the signature reference and the number of WebAssembly arguments
    signatures: HashMap<SignatureIndex, (ir::SigRef, usize)>,

    // Imported and local functions that have been created by
    // `FuncEnvironment::make_direct_func()`.
    // Stores both the function reference and the number of WebAssembly arguments
    functions: HashMap<FuncIndex, (ir::FuncRef, usize)>,
}

// Public methods that are exposed to non-`cranelift_wasm` API consumers.
impl FuncTranslationState {
    /// True if the current translation state expresses reachable code, false if it is unreachable.
    #[inline]
    pub fn reachable(&self) -> bool {
        self.reachable
    }
}

impl FuncTranslationState {
    /// Construct a new, empty, `FuncTranslationState`
    pub(crate) fn new() -> Self {
        Self {
            stack: Vec::new(),
            control_stack: Vec::new(),
            reachable: true,
            globals: HashMap::new(),
            heaps: HashMap::new(),
            tables: HashMap::new(),
            signatures: HashMap::new(),
            functions: HashMap::new(),
        }
    }

    fn clear(&mut self) {
        debug_assert!(self.stack.is_empty());
        debug_assert!(self.control_stack.is_empty());
        self.reachable = true;
        self.globals.clear();
        self.heaps.clear();
        self.tables.clear();
        self.signatures.clear();
        self.functions.clear();
    }

    /// Initialize the state for compiling a function with the given signature.
    ///
    /// This resets the state to containing only a single block representing the whole function.
    /// The exit block is the last block in the function which will contain the return instruction.
    pub fn initialize(&mut self, sig: &ir::Signature, exit_block: Block) {
        self.clear();
        self.push_block(
            exit_block,
            0,
            sig.returns
                .iter()
                .filter(|arg| arg.purpose == ir::ArgumentPurpose::Normal)
                .count(),
        );
    }

    /// Push a value.
    pub(crate) fn push1(&mut self, val: Value) {
        self.stack.push(val);
    }

    /// Push multiple values.
    pub(crate) fn pushn(&mut self, vals: &[Value]) {
        self.stack.extend_from_slice(vals);
    }

    /// Pop one value.
    pub(crate) fn pop1(&mut self) -> Value {
        self.stack
            .pop()
            .expect("attempted to pop a value from an empty stack")
    }

    /// Peek at the top of the stack without popping it.
    pub(crate) fn peek1(&self) -> Value {
        *self
            .stack
            .last()
            .expect("attempted to peek at a value on an empty stack")
    }

    /// Pop two values. Return them in the order they were pushed.
    pub(crate) fn pop2(&mut self) -> (Value, Value) {
        let v2 = self.stack.pop().unwrap();
        let v1 = self.stack.pop().unwrap();
        (v1, v2)
    }

    /// Pop three values. Return them in the order they were pushed.
    pub(crate) fn pop3(&mut self) -> (Value, Value, Value) {
        let v3 = self.stack.pop().unwrap();
        let v2 = self.stack.pop().unwrap();
        let v1 = self.stack.pop().unwrap();
        (v1, v2, v3)
    }

    /// Helper to ensure the the stack size is at least as big as `n`; note that due to
    /// `debug_assert` this will not execute in non-optimized builds.
    #[inline]
    fn ensure_length_is_at_least(&self, n: usize) {
        debug_assert!(
            n <= self.stack.len(),
            "attempted to access {} values but stack only has {} values",
            n,
            self.stack.len()
        )
    }

    /// Pop the top `n` values on the stack.
    ///
    /// The popped values are not returned. Use `peekn` to look at them before popping.
    pub(crate) fn popn(&mut self, n: usize) {
        self.ensure_length_is_at_least(n);
        let new_len = self.stack.len() - n;
        self.stack.truncate(new_len);
    }

    /// Peek at the top `n` values on the stack in the order they were pushed.
    pub(crate) fn peekn(&self, n: usize) -> &[Value] {
        self.ensure_length_is_at_least(n);
        &self.stack[self.stack.len() - n..]
    }

    /// Peek at the top `n` values on the stack in the order they were pushed.
    pub(crate) fn peekn_mut(&mut self, n: usize) -> &mut [Value] {
        self.ensure_length_is_at_least(n);
        let len = self.stack.len();
        &mut self.stack[len - n..]
    }

    /// Push a block on the control stack.
    pub(crate) fn push_block(
        &mut self,
        following_code: Block,
        num_param_types: usize,
        num_result_types: usize,
    ) {
        debug_assert!(num_param_types <= self.stack.len());
        self.control_stack.push(ControlStackFrame::Block {
            destination: following_code,
            original_stack_size: self.stack.len() - num_param_types,
            num_param_values: num_param_types,
            num_return_values: num_result_types,
            exit_is_branched_to: false,
        });
    }

    /// Push a loop on the control stack.
    pub(crate) fn push_loop(
        &mut self,
        header: Block,
        following_code: Block,
        num_param_types: usize,
        num_result_types: usize,
    ) {
        debug_assert!(num_param_types <= self.stack.len());
        self.control_stack.push(ControlStackFrame::Loop {
            header,
            destination: following_code,
            original_stack_size: self.stack.len() - num_param_types,
            num_param_values: num_param_types,
            num_return_values: num_result_types,
        });
    }

    /// Push an if on the control stack.
    pub(crate) fn push_if(
        &mut self,
        destination: Block,
        else_data: ElseData,
        num_param_types: usize,
        num_result_types: usize,
        blocktype: wasmparser::TypeOrFuncType,
    ) {
        debug_assert!(num_param_types <= self.stack.len());

        // Push a second copy of our `if`'s parameters on the stack. This lets
        // us avoid saving them on the side in the `ControlStackFrame` for our
        // `else` block (if it exists), which would require a second heap
        // allocation. See also the comment in `translate_operator` for
        // `Operator::Else`.
        self.stack.reserve(num_param_types);
        for i in (self.stack.len() - num_param_types)..self.stack.len() {
            let val = self.stack[i];
            self.stack.push(val);
        }

        self.control_stack.push(ControlStackFrame::If {
            destination,
            else_data,
            original_stack_size: self.stack.len() - num_param_types,
            num_param_values: num_param_types,
            num_return_values: num_result_types,
            exit_is_branched_to: false,
            head_is_reachable: self.reachable,
            consequent_ends_reachable: None,
            blocktype,
        });
    }
}

/// Methods for handling entity references.
impl FuncTranslationState {
    /// Get the `GlobalVariable` reference that should be used to access the global variable
    /// `index`. Create the reference if necessary.
    /// Also return the WebAssembly type of the global.
    pub(crate) fn get_global<FE: FuncEnvironment + ?Sized>(
        &mut self,
        func: &mut ir::Function,
        index: u32,
        environ: &mut FE,
    ) -> WasmResult<GlobalVariable> {
        let index = GlobalIndex::from_u32(index);
        match self.globals.entry(index) {
            Occupied(entry) => Ok(*entry.get()),
            Vacant(entry) => Ok(*entry.insert(environ.make_global(func, index)?)),
        }
    }

    /// Get the `Heap` reference that should be used to access linear memory `index`.
    /// Create the reference if necessary.
    pub(crate) fn get_heap<FE: FuncEnvironment + ?Sized>(
        &mut self,
        func: &mut ir::Function,
        index: u32,
        environ: &mut FE,
    ) -> WasmResult<ir::Heap> {
        let index = MemoryIndex::from_u32(index);
        match self.heaps.entry(index) {
            Occupied(entry) => Ok(*entry.get()),
            Vacant(entry) => Ok(*entry.insert(environ.make_heap(func, index)?)),
        }
    }

    /// Get the `Table` reference that should be used to access table `index`.
    /// Create the reference if necessary.
    pub(crate) fn get_table<FE: FuncEnvironment + ?Sized>(
        &mut self,
        func: &mut ir::Function,
        index: u32,
        environ: &mut FE,
    ) -> WasmResult<ir::Table> {
        let index = TableIndex::from_u32(index);
        match self.tables.entry(index) {
            Occupied(entry) => Ok(*entry.get()),
            Vacant(entry) => Ok(*entry.insert(environ.make_table(func, index)?)),
        }
    }

    /// Get the `SigRef` reference that should be used to make an indirect call with signature
    /// `index`. Also return the number of WebAssembly arguments in the signature.
    ///
    /// Create the signature if necessary.
    pub(crate) fn get_indirect_sig<FE: FuncEnvironment + ?Sized>(
        &mut self,
        func: &mut ir::Function,
        index: u32,
        environ: &mut FE,
    ) -> WasmResult<(ir::SigRef, usize)> {
        let index = SignatureIndex::from_u32(index);
        match self.signatures.entry(index) {
            Occupied(entry) => Ok(*entry.get()),
            Vacant(entry) => {
                let sig = environ.make_indirect_sig(func, index)?;
                Ok(*entry.insert((sig, num_wasm_parameters(environ, &func.dfg.signatures[sig]))))
            }
        }
    }

    /// Get the `FuncRef` reference that should be used to make a direct call to function
    /// `index`. Also return the number of WebAssembly arguments in the signature.
    ///
    /// Create the function reference if necessary.
    pub(crate) fn get_direct_func<FE: FuncEnvironment + ?Sized>(
        &mut self,
        func: &mut ir::Function,
        index: u32,
        environ: &mut FE,
    ) -> WasmResult<(ir::FuncRef, usize)> {
        let index = FuncIndex::from_u32(index);
        match self.functions.entry(index) {
            Occupied(entry) => Ok(*entry.get()),
            Vacant(entry) => {
                let fref = environ.make_direct_func(func, index)?;
                let sig = func.dfg.ext_funcs[fref].signature;
                Ok(*entry.insert((
                    fref,
                    num_wasm_parameters(environ, &func.dfg.signatures[sig]),
                )))
            }
        }
    }
}

fn num_wasm_parameters<FE: FuncEnvironment + ?Sized>(
    environ: &FE,
    signature: &ir::Signature,
) -> usize {
    (0..signature.params.len())
        .filter(|index| environ.is_wasm_parameter(signature, *index))
        .count()
}