1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
//! Implementations of various IR traversals.

use crate::ir::*;

/// Perform an intra-procedural, depth-first, in-order traversal of the IR.
///
/// * *Intra-procedural*: Only traverses IR within a function. Does not cross
///   function boundaries (although it will report edges to other functions via
///   `visit_function_id` calls on the visitor, so you can use this as a
///   building block for making global, inter-procedural analyses).
///
/// * *Depth-first, in-order*: Visits instructions and instruction sequences in
///   the order they are defined and nested. See [Wikipedia][in-order] for
///   details.
///
/// Calls `visitor` methods for every instruction, instruction sequence, and
/// resource that the traversal visits.
///
/// The traversals begins at the `start` instruction sequence and goes from
/// there. To traverse everything in a function, pass `func.entry_block()` as
/// `start`.
///
/// This implementation is iterative — not recursive — and so it
/// will not blow the call stack on deeply nested Wasm (although it may still
/// OOM).
///
/// [in-order]: https://en.wikipedia.org/wiki/Tree_traversal#In-order_(LNR)
///
/// # Example
///
/// This example counts the number of instruction sequences in a function.
///
/// ```no_run
/// use walrus::LocalFunction;
/// use walrus::ir::*;
///
/// #[derive(Default)]
/// struct CountInstructionSequences {
///     count: usize,
/// }
///
/// impl<'instr> Visitor<'instr> for CountInstructionSequences {
///     fn start_instr_seq(&mut self, _: &'instr InstrSeq) {
///         self.count += 1;
///     }
/// }
///
/// // Get a function from somewhere.
/// # let get_my_function = || unimplemented!();
/// let my_func: &LocalFunction = get_my_function();
///
/// // Create our visitor.
/// let mut visitor = CountInstructionSequences::default();
///
/// // Traverse everything in the function with our visitor.
/// dfs_in_order(&mut visitor, my_func, my_func.entry_block());
///
/// // Use the aggregate results that `visitor` built up.
/// println!("The number of instruction sequences in `my_func` is {}", visitor.count);
/// ```
pub fn dfs_in_order<'instr>(
    visitor: &mut impl Visitor<'instr>,
    func: &'instr LocalFunction,
    start: InstrSeqId,
) {
    // The stack of instruction sequences we still need to visit, and how far
    // along in the instruction sequence we are.
    let mut stack: Vec<(InstrSeqId, usize)> = vec![(start, 0)];

    'traversing_blocks: while let Some((seq_id, index)) = stack.pop() {
        let seq = func.block(seq_id);

        if index == 0 {
            // If the `index` is zero, then we haven't processed any
            // instructions in this sequence yet, and it is the first time we
            // are entering it, so let the visitor know.
            visitor.start_instr_seq(seq);
            seq.visit(visitor);
        }

        'traversing_instrs: for (index, (instr, loc)) in seq.instrs.iter().enumerate().skip(index) {
            // Visit this instruction.
            log::trace!("dfs_in_order: visit_instr({:?})", instr);
            visitor.visit_instr(instr, loc);

            // Visit every other resource that this instruction references,
            // e.g. `MemoryId`s, `FunctionId`s and all that.
            log::trace!("dfs_in_order: ({:?}).visit(..)", instr);
            instr.visit(visitor);

            match instr {
                // Pause iteration through this sequence's instructions and
                // enqueue `seq` to be traversed next before continuing with
                // this one where we left off.
                Instr::Block(Block { seq }) | Instr::Loop(Loop { seq }) => {
                    stack.push((seq_id, index + 1));
                    stack.push((*seq, 0));
                    continue 'traversing_blocks;
                }

                // Pause iteration through this sequence's instructions.
                // Traverse the consequent and then the alternative.
                Instr::IfElse(IfElse {
                    consequent,
                    alternative,
                }) => {
                    stack.push((seq_id, index + 1));
                    stack.push((*alternative, 0));
                    stack.push((*consequent, 0));
                    continue 'traversing_blocks;
                }

                // No other instructions define new instruction sequences, so
                // continue to the next instruction.
                _ => continue 'traversing_instrs,
            }
        }

        // If we made it through the whole loop above, then we processed every
        // instruction in the sequence, and its nested sequences, so we are
        // finished with it!
        visitor.end_instr_seq(seq);
    }
}

/// Perform an intra-procedural, depth-first, pre-order, mutable traversal of
/// the IR.
///
/// * *Intra-procedural*: Only traverses IR within a function. Does not cross
///   function boundaries (although it will report edges to other functions via
///   `visit_function_id` calls on the visitor, so you can use this as a
///   building block for making global, inter-procedural analyses).
///
/// * *Depth-first, pre-order*: Visits instructions and instruction sequences in
///   a top-down manner, where all instructions in a parent sequences are
///   visited before child sequences. See [Wikipedia][pre-order] for details.
///
/// Calls `visitor` methods for every instruction, instruction sequence, and
/// resource that the traversal visits.
///
/// The traversals begins at the `start` instruction sequence and goes from
/// there. To traverse everything in a function, pass `func.entry_block()` as
/// `start`.
///
/// This implementation is iterative &mdash; not recursive &mdash; and so it
/// will not blow the call stack on deeply nested Wasm (although it may still
/// OOM).
///
/// [pre-order]: https://en.wikipedia.org/wiki/Tree_traversal#Pre-order_(NLR)
///
/// # Example
///
/// This example walks the IR and adds one to all `i32.const`'s values.
///
/// ```no_run
/// use walrus::LocalFunction;
/// use walrus::ir::*;
///
/// #[derive(Default)]
/// struct AddOneToI32Consts;
///
/// impl VisitorMut for AddOneToI32Consts {
///     fn visit_const_mut(&mut self, c: &mut Const) {
///         match &mut c.value {
///             Value::I32(x) => {
///                 *x += 1;
///             }
///             _ => {},
///         }
///     }
/// }
///
/// // Get a function from somewhere.
/// # let get_my_function = || unimplemented!();
/// let my_func: &mut LocalFunction = get_my_function();
///
/// // Create our visitor.
/// let mut visitor = AddOneToI32Consts::default();
///
/// // Traverse and mutate everything in the function with our visitor.
/// dfs_pre_order_mut(&mut visitor, my_func, my_func.entry_block());
/// ```
pub fn dfs_pre_order_mut(
    visitor: &mut impl VisitorMut,
    func: &mut LocalFunction,
    start: InstrSeqId,
) {
    let mut stack = vec![start];

    while let Some(seq_id) = stack.pop() {
        let seq = func.block_mut(seq_id);
        visitor.start_instr_seq_mut(seq);
        seq.visit_mut(visitor);

        for (instr, loc) in &mut seq.instrs {
            visitor.visit_instr_mut(instr, loc);
            instr.visit_mut(visitor);

            match instr {
                Instr::Block(Block { seq }) | Instr::Loop(Loop { seq }) => {
                    stack.push(*seq);
                }

                Instr::IfElse(IfElse {
                    consequent,
                    alternative,
                }) => {
                    stack.push(*alternative);
                    stack.push(*consequent);
                }

                _ => {}
            }
        }

        visitor.end_instr_seq_mut(seq);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Default)]
    struct TestVisitor {
        visits: Vec<String>,
    }

    impl TestVisitor {
        fn push(&mut self, s: impl ToString) {
            self.visits.push(s.to_string());
        }
    }

    impl<'a> Visitor<'a> for TestVisitor {
        fn start_instr_seq(&mut self, _: &'a InstrSeq) {
            self.push("start");
        }

        fn end_instr_seq(&mut self, _: &'a InstrSeq) {
            self.push("end");
        }

        fn visit_const(&mut self, c: &Const) {
            match c.value {
                Value::I32(x) => self.push(x),
                _ => unreachable!(),
            }
        }

        fn visit_drop(&mut self, _: &Drop) {
            self.push("drop");
        }

        fn visit_block(&mut self, _: &Block) {
            self.push("block");
        }

        fn visit_if_else(&mut self, _: &IfElse) {
            self.push("if-else");
        }
    }

    impl VisitorMut for TestVisitor {
        fn start_instr_seq_mut(&mut self, _: &mut InstrSeq) {
            self.push("start");
        }

        fn end_instr_seq_mut(&mut self, _: &mut InstrSeq) {
            self.push("end");
        }

        fn visit_const_mut(&mut self, c: &mut Const) {
            match &mut c.value {
                Value::I32(x) => {
                    self.push(*x);
                    *x += 1;
                }
                _ => unreachable!(),
            }
        }

        fn visit_drop_mut(&mut self, _: &mut Drop) {
            self.push("drop");
        }

        fn visit_block_mut(&mut self, _: &mut Block) {
            self.push("block");
        }

        fn visit_if_else_mut(&mut self, _: &mut IfElse) {
            self.push("if-else");
        }
    }

    fn make_test_func(module: &mut crate::Module) -> &mut LocalFunction {
        let block_ty = module.types.add(&[], &[]);
        let mut builder = crate::FunctionBuilder::new(&mut module.types, &[], &[]);

        builder
            .func_body()
            .i32_const(1)
            .drop()
            .block(block_ty, |block| {
                block
                    .i32_const(2)
                    .drop()
                    .if_else(
                        block_ty,
                        |then| {
                            then.i32_const(3).drop();
                        },
                        |else_| {
                            else_.i32_const(4).drop();
                        },
                    )
                    .i32_const(5)
                    .drop();
            })
            .i32_const(6)
            .drop();

        let func_id = builder.finish(vec![], &mut module.funcs);
        module.funcs.get_mut(func_id).kind.unwrap_local_mut()
    }

    #[test]
    fn dfs_in_order() {
        let mut module = crate::Module::default();
        let func = make_test_func(&mut module);

        let mut visitor = TestVisitor::default();
        crate::ir::dfs_in_order(&mut visitor, func, func.entry_block());

        let expected = [
            "start", "1", "drop", "block", "start", "2", "drop", "if-else", "start", "3", "drop",
            "end", "start", "4", "drop", "end", "5", "drop", "end", "6", "drop", "end",
        ];

        assert_eq!(
            visitor.visits,
            expected.iter().map(|s| s.to_string()).collect::<Vec<_>>()
        );
    }

    #[test]
    fn dfs_pre_order_mut() {
        let mut module = crate::Module::default();
        let func = make_test_func(&mut module);

        let mut visitor = TestVisitor::default();
        crate::ir::dfs_pre_order_mut(&mut visitor, func, func.entry_block());

        let mut expected = vec![];
        // function entry
        expected.extend(vec!["start", "1", "drop", "block", "6", "drop", "end"]);
        // block
        expected.extend(vec!["start", "2", "drop", "if-else", "5", "drop", "end"]);
        // consequent
        expected.extend(vec!["start", "3", "drop", "end"]);
        // alternative
        expected.extend(vec!["start", "4", "drop", "end"]);

        assert_eq!(
            visitor.visits,
            expected.iter().map(|s| s.to_string()).collect::<Vec<_>>()
        );

        // And then check that the increments of the constant values did indeed
        // take effect.

        visitor.visits.clear();
        crate::ir::dfs_in_order(&mut visitor, func, func.entry_block());

        let expected = [
            "start", "2", "drop", "block", "start", "3", "drop", "if-else", "start", "4", "drop",
            "end", "start", "5", "drop", "end", "6", "drop", "end", "7", "drop", "end",
        ];

        assert_eq!(
            visitor.visits,
            expected.iter().map(|s| s.to_string()).collect::<Vec<_>>()
        );
    }
}