1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
// Copyright (c) 2021 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! In the Vulkan API, descriptor sets must be allocated from *descriptor pools*.
//!
//! A descriptor pool holds and manages the memory of one or more descriptor sets. If you destroy a
//! descriptor pool, all of its descriptor sets are automatically destroyed.
//!
//! In vulkano, creating a descriptor set requires passing an implementation of the
//! [`DescriptorSetAllocator`] trait, which you can implement yourself or use the vulkano-provided
//! [`StandardDescriptorSetAllocator`].

use self::sorted_map::SortedMap;
use super::{
    layout::DescriptorSetLayout,
    pool::{
        DescriptorPool, DescriptorPoolAllocError, DescriptorPoolCreateInfo,
        DescriptorSetAllocateInfo,
    },
    sys::UnsafeDescriptorSet,
};
use crate::{
    device::{Device, DeviceOwned},
    OomError,
};
use crossbeam_queue::ArrayQueue;
use std::{cell::UnsafeCell, mem::ManuallyDrop, num::NonZeroU64, sync::Arc};
use thread_local::ThreadLocal;

const MAX_POOLS: usize = 32;

const MAX_SETS: usize = 256;

/// Types that manage the memory of descriptor sets.
///
/// # Safety
///
/// A Vulkan descriptor pool must be externally synchronized as if it owned the descriptor sets that
/// were allocated from it. This includes allocating from the pool, freeing from the pool and
/// resetting the pool or individual descriptor sets. The implementation of `DescriptorSetAllocator`
/// is expected to manage this.
///
/// The destructor of the [`DescriptorSetAlloc`] is expected to free the descriptor set, reset the
/// descriptor set, or add it to a pool so that it gets reused. If the implementation frees or
/// resets the descriptor set, it must not forget that this operation must be externally
/// synchronized.
pub unsafe trait DescriptorSetAllocator: DeviceOwned {
    /// Object that represented an allocated descriptor set.
    ///
    /// The destructor of this object should free the descriptor set.
    type Alloc: DescriptorSetAlloc;

    /// Allocates a descriptor set.
    fn allocate(
        &self,
        layout: &Arc<DescriptorSetLayout>,
        variable_descriptor_count: u32,
    ) -> Result<Self::Alloc, OomError>;
}

/// An allocated descriptor set.
pub trait DescriptorSetAlloc: Send + Sync {
    /// Returns the inner unsafe descriptor set object.
    fn inner(&self) -> &UnsafeDescriptorSet;

    /// Returns the inner unsafe descriptor set object.
    fn inner_mut(&mut self) -> &mut UnsafeDescriptorSet;
}

/// Standard implementation of a descriptor set allocator.
///
/// The intended way to use this allocator is to have one that is used globally for the duration of
/// the program, in order to avoid creating and destroying [`DescriptorPool`]s, as that is
/// expensive. Alternatively, you can have one locally on a thread for the duration of the thread.
///
/// Internally, this allocator uses one or more `DescriptorPool`s per descriptor set layout per
/// thread, using Thread-Local Storage. When a thread first allocates, an entry is reserved for the
/// thread and descriptor set layout combination. After a thread exits and the allocator wasn't
/// dropped yet, its entries are freed, but the pools it used are not dropped. The next time a new
/// thread allocates for the first time, the entries are reused along with the pools. If all
/// threads drop their reference to the allocator, all entries along with the allocator are
/// dropped, even if the threads didn't exit yet, which is why you should keep the allocator alive
/// for as long as you need to allocate so that the pools can keep being reused.
///
/// This allocator only needs to lock when a thread first allocates or when a thread that
/// previously allocated exits. In all other cases, allocation is lock-free.
///
/// [`DescriptorPool`]: crate::descriptor_set::pool::DescriptorPool
#[derive(Debug)]
pub struct StandardDescriptorSetAllocator {
    device: Arc<Device>,
    pools: ThreadLocal<UnsafeCell<SortedMap<NonZeroU64, Entry>>>,
}

#[derive(Debug)]
enum Entry {
    Fixed(FixedEntry),
    Variable(VariableEntry),
}

// This is needed because of the blanket impl of `Send` on `Arc<T>`, which requires that `T` is
// `Send + Sync`. `FixedPool` and `VariablePool` are `Send + !Sync` because `DescriptorPool` is
// `!Sync`. That's fine however because we never access the `DescriptorPool` concurrently.
unsafe impl Send for Entry {}

impl StandardDescriptorSetAllocator {
    /// Creates a new `StandardDescriptorSetAllocator`.
    #[inline]
    pub fn new(device: Arc<Device>) -> StandardDescriptorSetAllocator {
        StandardDescriptorSetAllocator {
            device,
            pools: ThreadLocal::new(),
        }
    }

    /// Clears the entry for the given descriptor set layout and the current thread. This does not
    /// mean that the pools are dropped immediately. A pool is kept alive for as long as descriptor
    /// sets allocated from it exist.
    ///
    /// This has no effect if the entry was not initialized yet.
    #[inline]
    pub fn clear(&self, layout: &Arc<DescriptorSetLayout>) {
        unsafe { &mut *self.pools.get_or(Default::default).get() }.remove(layout.id())
    }

    /// Clears all entries for the current thread. This does not mean that the pools are dropped
    /// immediately. A pool is kept alive for as long as descriptor sets allocated from it exist.
    ///
    /// This has no effect if no entries were initialized yet.
    #[inline]
    pub fn clear_all(&self) {
        unsafe { *self.pools.get_or(Default::default).get() = SortedMap::default() };
    }
}

unsafe impl DescriptorSetAllocator for StandardDescriptorSetAllocator {
    type Alloc = StandardDescriptorSetAlloc;

    /// Allocates a descriptor set.
    ///
    /// # Panics
    ///
    /// - Panics if the provided `layout` is for push descriptors rather than regular descriptor
    ///   sets.
    /// - Panics if the provided `variable_descriptor_count` is greater than the maximum number of
    ///   variable count descriptors in the set.
    #[inline]
    fn allocate(
        &self,
        layout: &Arc<DescriptorSetLayout>,
        variable_descriptor_count: u32,
    ) -> Result<StandardDescriptorSetAlloc, OomError> {
        assert!(
            !layout.push_descriptor(),
            "the provided descriptor set layout is for push descriptors, and cannot be used to \
            build a descriptor set object",
        );

        let max_count = layout.variable_descriptor_count();

        assert!(
            variable_descriptor_count <= max_count,
            "the provided variable_descriptor_count ({}) is greater than the maximum number of \
            variable count descriptors in the set ({})",
            variable_descriptor_count,
            max_count,
        );

        let pools = self.pools.get_or(Default::default);
        let entry = unsafe { &mut *pools.get() }.get_or_try_insert(layout.id(), || {
            if max_count == 0 {
                FixedEntry::new(layout.clone()).map(Entry::Fixed)
            } else {
                VariableEntry::new(layout.clone()).map(Entry::Variable)
            }
        })?;

        match entry {
            Entry::Fixed(entry) => entry.allocate(),
            Entry::Variable(entry) => entry.allocate(variable_descriptor_count),
        }
    }
}

unsafe impl DescriptorSetAllocator for Arc<StandardDescriptorSetAllocator> {
    type Alloc = StandardDescriptorSetAlloc;

    #[inline]
    fn allocate(
        &self,
        layout: &Arc<DescriptorSetLayout>,
        variable_descriptor_count: u32,
    ) -> Result<Self::Alloc, OomError> {
        (**self).allocate(layout, variable_descriptor_count)
    }
}

unsafe impl DeviceOwned for StandardDescriptorSetAllocator {
    #[inline]
    fn device(&self) -> &Arc<Device> {
        &self.device
    }
}

#[derive(Debug)]
struct FixedEntry {
    // The `FixedPool` struct contains an actual Vulkan pool. Every time it is full we create
    // a new pool and replace the current one with the new one.
    pool: Arc<FixedPool>,
    // The amount of sets available to use when we create a new Vulkan pool.
    set_count: usize,
    // The descriptor set layout that this pool is for.
    layout: Arc<DescriptorSetLayout>,
}

impl FixedEntry {
    fn new(layout: Arc<DescriptorSetLayout>) -> Result<Self, OomError> {
        Ok(FixedEntry {
            pool: FixedPool::new(&layout, MAX_SETS)?,
            set_count: MAX_SETS,
            layout,
        })
    }

    fn allocate(&mut self) -> Result<StandardDescriptorSetAlloc, OomError> {
        let inner = if let Some(inner) = self.pool.reserve.pop() {
            inner
        } else {
            self.set_count *= 2;
            self.pool = FixedPool::new(&self.layout, self.set_count)?;

            self.pool.reserve.pop().unwrap()
        };

        Ok(StandardDescriptorSetAlloc {
            inner: ManuallyDrop::new(inner),
            parent: AllocParent::Fixed(self.pool.clone()),
        })
    }
}

#[derive(Debug)]
struct FixedPool {
    // The actual Vulkan descriptor pool. This field isn't actually used anywhere, but we need to
    // keep the pool alive in order to keep the descriptor sets valid.
    _inner: DescriptorPool,
    // List of descriptor sets. When `alloc` is called, a descriptor will be extracted from this
    // list. When a `SingleLayoutPoolAlloc` is dropped, its descriptor set is put back in this list.
    reserve: ArrayQueue<UnsafeDescriptorSet>,
}

impl FixedPool {
    fn new(layout: &Arc<DescriptorSetLayout>, set_count: usize) -> Result<Arc<Self>, OomError> {
        let inner = DescriptorPool::new(
            layout.device().clone(),
            DescriptorPoolCreateInfo {
                max_sets: set_count as u32,
                pool_sizes: layout
                    .descriptor_counts()
                    .iter()
                    .map(|(&ty, &count)| (ty, count * set_count as u32))
                    .collect(),
                ..Default::default()
            },
        )?;

        let allocate_infos = (0..set_count).map(|_| DescriptorSetAllocateInfo {
            layout,
            variable_descriptor_count: 0,
        });

        let reserve = match unsafe { inner.allocate_descriptor_sets(allocate_infos) } {
            Ok(allocs) => {
                let reserve = ArrayQueue::new(set_count);
                for alloc in allocs {
                    let _ = reserve.push(alloc);
                }

                reserve
            }
            Err(DescriptorPoolAllocError::OutOfHostMemory) => {
                return Err(OomError::OutOfHostMemory);
            }
            Err(DescriptorPoolAllocError::OutOfDeviceMemory) => {
                return Err(OomError::OutOfDeviceMemory);
            }
            Err(DescriptorPoolAllocError::FragmentedPool) => {
                // This can't happen as we don't free individual sets.
                unreachable!();
            }
            Err(DescriptorPoolAllocError::OutOfPoolMemory) => {
                // We created the pool with an exact size.
                unreachable!();
            }
        };

        Ok(Arc::new(FixedPool {
            _inner: inner,
            reserve,
        }))
    }
}

#[derive(Debug)]
struct VariableEntry {
    // The `VariablePool` struct contains an actual Vulkan pool. Every time it is full
    // we grab one from the reserve, or create a new pool if there are none.
    pool: Arc<VariablePool>,
    // When a `VariablePool` is dropped, it returns its Vulkan pool here for reuse.
    reserve: Arc<ArrayQueue<DescriptorPool>>,
    // The descriptor set layout that this pool is for.
    layout: Arc<DescriptorSetLayout>,
    // The number of sets currently allocated from the Vulkan pool.
    allocations: usize,
}

impl VariableEntry {
    fn new(layout: Arc<DescriptorSetLayout>) -> Result<Self, OomError> {
        let reserve = Arc::new(ArrayQueue::new(MAX_POOLS));

        Ok(VariableEntry {
            pool: VariablePool::new(&layout, reserve.clone())?,
            reserve,
            layout,
            allocations: 0,
        })
    }

    fn allocate(
        &mut self,
        variable_descriptor_count: u32,
    ) -> Result<StandardDescriptorSetAlloc, OomError> {
        if self.allocations >= MAX_SETS {
            self.pool = if let Some(inner) = self.reserve.pop() {
                Arc::new(VariablePool {
                    inner: ManuallyDrop::new(inner),
                    reserve: self.reserve.clone(),
                })
            } else {
                VariablePool::new(&self.layout, self.reserve.clone())?
            };
            self.allocations = 0;
        }

        let allocate_info = DescriptorSetAllocateInfo {
            layout: &self.layout,
            variable_descriptor_count,
        };

        let inner = match unsafe { self.pool.inner.allocate_descriptor_sets([allocate_info]) } {
            Ok(mut sets) => sets.next().unwrap(),
            Err(DescriptorPoolAllocError::OutOfHostMemory) => {
                return Err(OomError::OutOfHostMemory);
            }
            Err(DescriptorPoolAllocError::OutOfDeviceMemory) => {
                return Err(OomError::OutOfDeviceMemory);
            }
            Err(DescriptorPoolAllocError::FragmentedPool) => {
                // This can't happen as we don't free individual sets.
                unreachable!();
            }
            Err(DescriptorPoolAllocError::OutOfPoolMemory) => {
                // We created the pool to fit the maximum variable descriptor count.
                unreachable!();
            }
        };

        self.allocations += 1;

        Ok(StandardDescriptorSetAlloc {
            inner: ManuallyDrop::new(inner),
            parent: AllocParent::Variable(self.pool.clone()),
        })
    }
}

#[derive(Debug)]
struct VariablePool {
    // The actual Vulkan descriptor pool.
    inner: ManuallyDrop<DescriptorPool>,
    // Where we return the Vulkan descriptor pool in our `Drop` impl.
    reserve: Arc<ArrayQueue<DescriptorPool>>,
}

impl VariablePool {
    fn new(
        layout: &Arc<DescriptorSetLayout>,
        reserve: Arc<ArrayQueue<DescriptorPool>>,
    ) -> Result<Arc<Self>, OomError> {
        DescriptorPool::new(
            layout.device().clone(),
            DescriptorPoolCreateInfo {
                max_sets: MAX_SETS as u32,
                pool_sizes: layout
                    .descriptor_counts()
                    .iter()
                    .map(|(&ty, &count)| (ty, count * MAX_SETS as u32))
                    .collect(),
                ..Default::default()
            },
        )
        .map(|inner| {
            Arc::new(Self {
                inner: ManuallyDrop::new(inner),
                reserve,
            })
        })
    }
}

impl Drop for VariablePool {
    fn drop(&mut self) {
        let inner = unsafe { ManuallyDrop::take(&mut self.inner) };
        // TODO: This should not return `Result`, resetting a pool can't fail.
        unsafe { inner.reset() }.unwrap();

        // If there is not enough space in the reserve, we destroy the pool. The only way this can
        // happen is if something is resource hogging, forcing new pools to be created such that
        // the number exceeds `MAX_POOLS`, and then drops them all at once.
        let _ = self.reserve.push(inner);
    }
}

/// A descriptor set allocated from a [`StandardDescriptorSetAllocator`].
#[derive(Debug)]
pub struct StandardDescriptorSetAlloc {
    // The actual descriptor set.
    inner: ManuallyDrop<UnsafeDescriptorSet>,
    // The pool where we allocated from. Needed for our `Drop` impl.
    parent: AllocParent,
}

#[derive(Debug)]
enum AllocParent {
    Fixed(Arc<FixedPool>),
    Variable(Arc<VariablePool>),
}

// This is needed because of the blanket impl of `Send` on `Arc<T>`, which requires that `T` is
// `Send + Sync`. `FixedPool` and `VariablePool` are `Send + !Sync` because `DescriptorPool` is
// `!Sync`. That's fine however because we never access the `DescriptorPool` concurrently.
unsafe impl Send for StandardDescriptorSetAlloc {}
unsafe impl Sync for StandardDescriptorSetAlloc {}

impl DescriptorSetAlloc for StandardDescriptorSetAlloc {
    #[inline]
    fn inner(&self) -> &UnsafeDescriptorSet {
        &self.inner
    }

    #[inline]
    fn inner_mut(&mut self) -> &mut UnsafeDescriptorSet {
        &mut self.inner
    }
}

impl Drop for StandardDescriptorSetAlloc {
    #[inline]
    fn drop(&mut self) {
        let inner = unsafe { ManuallyDrop::take(&mut self.inner) };

        match &self.parent {
            AllocParent::Fixed(pool) => {
                let _ = pool.reserve.push(inner);
            }
            AllocParent::Variable(_) => {}
        }
    }
}

mod sorted_map {
    use smallvec::SmallVec;

    /// Minimal implementation of a `SortedMap`. This outperforms both a [`BTreeMap`] and
    /// [`HashMap`] for small numbers of elements. In Vulkan, having too many descriptor set
    /// layouts is highly discouraged, which is why this optimization makes sense.
    #[derive(Debug)]
    pub(super) struct SortedMap<K, V> {
        inner: SmallVec<[(K, V); 8]>,
    }

    impl<K, V> Default for SortedMap<K, V> {
        fn default() -> Self {
            Self {
                inner: SmallVec::default(),
            }
        }
    }

    impl<K: Ord + Copy, V> SortedMap<K, V> {
        pub fn get_or_try_insert<E>(
            &mut self,
            key: K,
            f: impl FnOnce() -> Result<V, E>,
        ) -> Result<&mut V, E> {
            match self.inner.binary_search_by_key(&key, |&(k, _)| k) {
                Ok(index) => Ok(&mut self.inner[index].1),
                Err(index) => {
                    self.inner.insert(index, (key, f()?));
                    Ok(&mut self.inner[index].1)
                }
            }
        }

        pub fn remove(&mut self, key: K) {
            if let Ok(index) = self.inner.binary_search_by_key(&key, |&(k, _)| k) {
                self.inner.remove(index);
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        descriptor_set::layout::{
            DescriptorSetLayoutBinding, DescriptorSetLayoutCreateInfo, DescriptorType,
        },
        shader::ShaderStages,
        VulkanObject,
    };
    use std::thread;

    #[test]
    fn threads_use_different_pools() {
        let (device, _) = gfx_dev_and_queue!();

        let layout = DescriptorSetLayout::new(
            device.clone(),
            DescriptorSetLayoutCreateInfo {
                bindings: [(
                    0,
                    DescriptorSetLayoutBinding {
                        stages: ShaderStages::all_graphics(),
                        ..DescriptorSetLayoutBinding::descriptor_type(DescriptorType::UniformBuffer)
                    },
                )]
                .into(),
                ..Default::default()
            },
        )
        .unwrap();

        let allocator = StandardDescriptorSetAllocator::new(device);

        let pool1 =
            if let AllocParent::Fixed(pool) = &allocator.allocate(&layout, 0).unwrap().parent {
                pool._inner.handle()
            } else {
                unreachable!()
            };

        thread::spawn(move || {
            let pool2 =
                if let AllocParent::Fixed(pool) = &allocator.allocate(&layout, 0).unwrap().parent {
                    pool._inner.handle()
                } else {
                    unreachable!()
                };
            assert_ne!(pool1, pool2);
        })
        .join()
        .unwrap();
    }
}