logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright (c) 2021 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use crate::buffer::{BufferAccess, BufferAccessObject};
use std::sync::Arc;

/// A collection of vertex buffers.
pub trait VertexBuffersCollection {
    /// Converts `self` into a list of buffers.
    // TODO: better than a Vec
    fn into_vec(self) -> Vec<Arc<dyn BufferAccess>>;
}

impl VertexBuffersCollection for () {
    #[inline]
    fn into_vec(self) -> Vec<Arc<dyn BufferAccess>> {
        Vec::new()
    }
}

impl<T: BufferAccessObject> VertexBuffersCollection for T {
    #[inline]
    fn into_vec(self) -> Vec<Arc<dyn BufferAccess>> {
        vec![self.as_buffer_access_object()]
    }
}

impl<T: BufferAccessObject> VertexBuffersCollection for Vec<T> {
    #[inline]
    fn into_vec(self) -> Vec<Arc<dyn BufferAccess>> {
        self.into_iter()
            .map(|src| src.as_buffer_access_object())
            .collect()
    }
}

impl<T: BufferAccessObject, const N: usize> VertexBuffersCollection for [T; N] {
    #[inline]
    fn into_vec(self) -> Vec<Arc<dyn BufferAccess>> {
        self.into_iter()
            .map(|src| src.as_buffer_access_object())
            .collect()
    }
}

macro_rules! impl_collection {
    ($first:ident $(, $others:ident)+) => (
        impl<$first$(, $others)+> VertexBuffersCollection for ($first, $($others),+)
            where $first: BufferAccessObject
                  $(, $others: BufferAccessObject)*
        {
            #[inline]
            #[allow(non_snake_case)]
            fn into_vec(self) -> Vec<Arc<dyn BufferAccess>> {
                let ($first, $($others,)*) = self;
                vec![$first.as_buffer_access_object() $(, $others.as_buffer_access_object())+]
            }
        }

        impl_collection!($($others),+);
    );

    ($i:ident) => ();
}

impl_collection!(Z, Y, X, W, V, U, T, S, R, Q, P, O, N, M, L, K, J, I, H, G, F, E, D, C, B, A);

#[cfg(test)]
mod tests {
    use super::VertexBuffersCollection;
    use crate::{
        buffer::{BufferAccess, BufferAccessObject, BufferInner},
        device::{Device, DeviceOwned},
        DeviceSize,
    };
    use std::sync::Arc;

    struct DummyBufferA {}
    struct DummyBufferB {}

    unsafe impl BufferAccess for DummyBufferA {
        fn inner(&self) -> BufferInner<'_> {
            unimplemented!()
        }

        fn size(&self) -> DeviceSize {
            unimplemented!()
        }
    }

    unsafe impl DeviceOwned for DummyBufferA {
        fn device(&self) -> &Arc<Device> {
            unimplemented!()
        }
    }

    impl BufferAccessObject for Arc<DummyBufferA> {
        fn as_buffer_access_object(self: &Arc<DummyBufferA>) -> Arc<dyn BufferAccess> {
            self.clone()
        }
    }

    unsafe impl BufferAccess for DummyBufferB {
        fn inner(&self) -> BufferInner<'_> {
            unimplemented!()
        }

        fn size(&self) -> DeviceSize {
            unimplemented!()
        }
    }

    unsafe impl DeviceOwned for DummyBufferB {
        fn device(&self) -> &Arc<Device> {
            unimplemented!()
        }
    }

    impl BufferAccessObject for Arc<DummyBufferB> {
        fn as_buffer_access_object(self: &Arc<DummyBufferB>) -> Arc<dyn BufferAccess> {
            self.clone()
        }
    }

    fn takes_collection<C: VertexBuffersCollection>(_: C) {}

    #[test]
    fn vertex_buffer_collection() {
        let concrete_a = Arc::new(DummyBufferA {});
        let concrete_b = Arc::new(DummyBufferB {});
        let concrete_aa = Arc::new(DummyBufferA {});
        let dynamic_a = concrete_a.clone() as Arc<dyn BufferAccess>;
        let dynamic_b = concrete_b.clone() as Arc<dyn BufferAccess>;

        // Concrete/Dynamic alone are valid
        takes_collection(concrete_a.clone());
        takes_collection(dynamic_a.clone());

        // Tuples of any variation are valid
        takes_collection((concrete_a.clone(), concrete_b.clone()));
        takes_collection((concrete_a.clone(), dynamic_b.clone()));
        takes_collection((dynamic_a.clone(), dynamic_b.clone()));

        // Vec need all the same type
        takes_collection(vec![concrete_a.clone(), concrete_aa.clone()]);
        takes_collection(vec![dynamic_a.clone(), dynamic_b.clone()]);
        // But casting the first or starting off with a dynamic will allow all variations
        takes_collection(vec![
            concrete_a.clone() as Arc<dyn BufferAccess>,
            concrete_b.clone(),
        ]);
        takes_collection(vec![dynamic_a.clone(), concrete_b.clone()]);

        // Arrays are similar to Vecs
        takes_collection([concrete_a.clone(), concrete_aa]);
        takes_collection([dynamic_a.clone(), dynamic_b.clone()]);
        takes_collection([concrete_a as Arc<dyn BufferAccess>, concrete_b.clone()]);
        takes_collection([dynamic_a.clone(), concrete_b]);
    }
}