1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#[cfg(test)]
#[path = "../../../tests/unit/solver/mutation/decompose_search_test.rs"]
mod decompose_search_test;

use super::super::rand::prelude::SliceRandom;
use crate::algorithms::nsga2::Objective;
use crate::construction::heuristics::*;
use crate::solver::mutation::Mutation;
use crate::solver::population::{Greedy, Individual, Population};
use crate::solver::RefinementContext;
use crate::utils::parallel_into_collect;
use hashbrown::HashSet;
use std::cmp::Ordering;
use std::iter::{empty, once};
use std::sync::{Arc, RwLock};

/// A mutation which decomposes original solution into multiple partial solutions,
/// preforms search independently, and then merges partial solution back into one solution.
pub struct DecomposeSearch {
    inner_mutation: Arc<dyn Mutation + Send + Sync>,
    max_routes_range: (i32, i32),
    repeat_count: usize,
}

impl DecomposeSearch {
    /// Create a new instance of `DecomposeSearch`.
    pub fn new(
        inner_mutation: Arc<dyn Mutation + Send + Sync>,
        max_routes_range: (usize, usize),
        repeat_count: usize,
    ) -> Self {
        let max_routes_range = (max_routes_range.0 as i32, max_routes_range.1 as i32);

        Self { inner_mutation, max_routes_range, repeat_count }
    }
}

impl Mutation for DecomposeSearch {
    fn mutate(&self, refinement_ctx: &RefinementContext, insertion_ctx: &InsertionContext) -> InsertionContext {
        decompose_individual(&refinement_ctx, insertion_ctx, self.max_routes_range)
            .map(|contexts| self.refine_decomposed(refinement_ctx, insertion_ctx, contexts))
            .unwrap_or_else(|| self.inner_mutation.mutate(refinement_ctx, insertion_ctx))
    }
}

const GREEDY_ERROR: &str = "greedy population has no individuals";

impl DecomposeSearch {
    fn refine_decomposed(
        &self,
        refinement_ctx: &RefinementContext,
        original_individual: &Individual,
        decomposed: Vec<(RefinementContext, HashSet<usize>)>,
    ) -> Individual {
        // NOTE: validate decomposition
        decomposed.iter().enumerate().for_each(|(outer_ix, (_, outer))| {
            decomposed.iter().enumerate().filter(|(inner_idx, _)| outer_ix != *inner_idx).for_each(
                |(_, (_, inner))| {
                    assert!(outer.intersection(&inner).next().is_none());
                },
            );
        });

        // do actual refinement independently for each decomposed context
        let decomposed = parallel_into_collect(decomposed, |mut decomposed| {
            (0..self.repeat_count).for_each(|_| {
                let insertion_ctx = decomposed.0.population.select().next().expect(GREEDY_ERROR);
                let insertion_ctx = self.inner_mutation.mutate(&decomposed.0, insertion_ctx);
                decomposed.0.population.add(insertion_ctx);
            });
            decomposed
        });

        // merge evolution results into one individual
        let mut individual = decomposed.into_iter().fold(
            Individual::new_empty(refinement_ctx.problem.clone(), refinement_ctx.environment.clone()),
            |individual, decomposed| merge_best(decomposed, original_individual, individual),
        );

        individual.restore();
        finalize_insertion_ctx(&mut individual);

        individual
    }
}

fn create_population(individual: Individual) -> Box<dyn Population + Send + Sync> {
    Box::new(Greedy::new(individual.problem.clone(), 1, Some(individual)))
}

fn create_multiple_individuals(
    individual: &Individual,
    max_routes_range: (i32, i32),
) -> Option<Vec<(Individual, HashSet<usize>)>> {
    let mut route_groups_distances = group_routes_by_proximity(individual)?;
    route_groups_distances.iter_mut().for_each(|route_distances| {
        let random = &individual.environment.random;
        let shuffle_count = random.uniform_int(2, (route_distances.len() as i32 / 4).max(2)) as usize;
        route_distances.partial_shuffle(&mut random.get_rng(), shuffle_count);
    });

    // identify route groups and create individuals from them
    let used_indices = RwLock::new(HashSet::new());
    let individuals = route_groups_distances
        .iter()
        .enumerate()
        .filter(|(outer_idx, _)| !used_indices.read().unwrap().contains(outer_idx))
        .map(|(outer_idx, route_group_distance)| {
            let group_size = individual.environment.random.uniform_int(max_routes_range.0, max_routes_range.1) as usize;
            let route_group = once(outer_idx)
                .chain(
                    route_group_distance
                        .iter()
                        .cloned()
                        .filter(|(inner_idx, _)| !used_indices.read().unwrap().contains(inner_idx))
                        .map(|(inner_idx, _)| inner_idx),
                )
                .take(group_size)
                .collect::<HashSet<_>>();

            route_group.iter().for_each(|idx| {
                used_indices.write().unwrap().insert(*idx);
            });

            create_partial_individual(individual, route_group)
        })
        .chain(create_empty_individuals(individual))
        .collect();

    Some(individuals)
}

fn create_partial_individual(individual: &Individual, route_indices: HashSet<usize>) -> (Individual, HashSet<usize>) {
    let solution = &individual.solution;

    let routes = route_indices.iter().map(|idx| solution.routes[*idx].deep_copy()).collect::<Vec<_>>();
    let actors = routes.iter().map(|route_ctx| route_ctx.route.actor.clone()).collect::<HashSet<_>>();
    let registry = solution.registry.deep_slice(|actor| actors.contains(actor));

    (
        Individual {
            problem: individual.problem.clone(),
            solution: SolutionContext {
                // NOTE we need to handle empty route indices case differently
                required: if route_indices.is_empty() { solution.required.clone() } else { Default::default() },
                ignored: if route_indices.is_empty() { solution.ignored.clone() } else { Default::default() },
                unassigned: if route_indices.is_empty() { solution.unassigned.clone() } else { Default::default() },
                locked: if route_indices.is_empty() {
                    let jobs = solution.routes.iter().flat_map(|rc| rc.route.tour.jobs()).collect::<HashSet<_>>();
                    solution.locked.iter().filter(|job| !jobs.contains(job)).cloned().collect()
                } else {
                    let jobs = routes.iter().flat_map(|route_ctx| route_ctx.route.tour.jobs()).collect::<HashSet<_>>();
                    solution.locked.iter().filter(|job| jobs.contains(job)).cloned().collect()
                },
                routes,
                registry,
                state: Default::default(),
            },
            environment: individual.environment.clone(),
        },
        route_indices,
    )
}

fn create_empty_individuals(individual: &Individual) -> Box<dyn Iterator<Item = (Individual, HashSet<usize>)>> {
    // TODO split into more individuals if too many required jobs are present
    //      this might increase overall refinement speed

    let solution = &individual.solution;

    if solution.required.is_empty()
        && solution.unassigned.is_empty()
        && solution.ignored.is_empty()
        && solution.locked.is_empty()
    {
        Box::new(empty())
    } else {
        Box::new(once((
            Individual {
                problem: individual.problem.clone(),
                solution: SolutionContext {
                    required: solution.required.clone(),
                    ignored: solution.ignored.clone(),
                    unassigned: solution.unassigned.clone(),
                    locked: solution.locked.clone(),
                    routes: Default::default(),
                    registry: solution.registry.deep_copy(),
                    state: Default::default(),
                },
                environment: individual.environment.clone(),
            },
            HashSet::default(),
        )))
    }
}

fn decompose_individual(
    refinement_ctx: &RefinementContext,
    individual: &Individual,
    max_routes_range: (i32, i32),
) -> Option<Vec<(RefinementContext, HashSet<usize>)>> {
    create_multiple_individuals(individual, max_routes_range)
        .map(|individuals| {
            individuals
                .into_iter()
                .map(|(individual, indices)| {
                    (
                        RefinementContext {
                            problem: refinement_ctx.problem.clone(),
                            population: create_population(individual),
                            state: Default::default(),
                            quota: refinement_ctx.quota.clone(),
                            environment: refinement_ctx.environment.clone(),
                            statistics: Default::default(),
                        },
                        indices,
                    )
                })
                .collect::<Vec<_>>()
        })
        .and_then(|contexts| if contexts.len() > 1 { Some(contexts) } else { None })
}

fn merge_best(
    decomposed: (RefinementContext, HashSet<usize>),
    original_individual: &Individual,
    accumulated: Individual,
) -> Individual {
    let (decomposed_ctx, route_indices) = decomposed;
    let (decomposed_individual, _) = decomposed_ctx.population.ranked().next().expect(GREEDY_ERROR);

    let (partial_individual, _) = create_partial_individual(original_individual, route_indices);
    let objective = partial_individual.problem.objective.as_ref();

    let source_solution = if objective.total_order(decomposed_individual, &partial_individual) == Ordering::Less {
        &decomposed_individual.solution
    } else {
        &partial_individual.solution
    };

    let mut accumulated = accumulated;
    let dest_solution = &mut accumulated.solution;

    // NOTE theoretically, we can avoid deep copy here, but this would require extension in Population trait
    dest_solution.routes.extend(source_solution.routes.iter().map(|route_ctx| route_ctx.deep_copy()));
    dest_solution.ignored.extend(source_solution.ignored.iter().cloned());
    dest_solution.required.extend(source_solution.required.iter().cloned());
    dest_solution.locked.extend(source_solution.locked.iter().cloned());
    dest_solution.unassigned.extend(source_solution.unassigned.iter().map(|(k, v)| (k.clone(), *v)));

    source_solution.routes.iter().for_each(|route_ctx| {
        dest_solution.registry.use_route(route_ctx);
    });

    accumulated
}