[][src]Struct vex::Matrix2

#[repr(C, packed)]pub struct Matrix2 {
    pub m: [f32; 4],
}

Fields

m: [f32; 4]

Methods

impl Matrix2[src]

pub fn new() -> Matrix2[src]

Creates a matrix set to its identity

Examples

use vex::Matrix2;
 
let actual = Matrix2::new();
assert_eq!(actual.m, [
    1.0, 0.0,
    0.0, 1.0,
]);

pub fn make(m11: f32, m21: f32, m12: f32, m22: f32) -> Matrix2[src]

Creates a matrix from the provided values

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
let expected = [1.0, 2.0, 3.0, 4.0];
assert_eq!(actual.m, expected);

pub fn m11(&self) -> f32[src]

Gets the value for the m11 element

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert_eq!(actual.m11(), 1.0);

pub fn m21(&self) -> f32[src]

Gets the value for the m21 element

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert_eq!(actual.m21(), 2.0);

pub fn m12(&self) -> f32[src]

Gets the value for the m12 element

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert_eq!(actual.m12(), 3.0);

pub fn m22(&self) -> f32[src]

Gets the value for the m22 element

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert_eq!(actual.m22(), 4.0);

pub fn set_m11(&mut self, v: f32)[src]

Sets the value for the m11 element

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(0.0, 0.0, 0.0, 0.0);
actual.set_m11(1.0);
let expected = [1.0, 0.0, 0.0, 0.0];
assert_eq!(actual.m, expected);

pub fn set_m21(&mut self, v: f32)[src]

Sets the value for the m21 element

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(0.0, 0.0, 0.0, 0.0);
actual.set_m21(1.0);
let expected = [0.0, 1.0, 0.0, 0.0];
assert_eq!(actual.m, expected);

pub fn set_m12(&mut self, v: f32)[src]

Sets the value for the m12 element

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(0.0, 0.0, 0.0, 0.0);
actual.set_m12(1.0);
let expected = [0.0, 0.0, 1.0, 0.0];
assert_eq!(actual.m, expected);

pub fn set_m22(&mut self, v: f32)[src]

Sets the value for the m22 element

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(0.0, 0.0, 0.0, 0.0);
actual.set_m22(1.0);
let expected = [0.0, 0.0, 0.0, 1.0];
assert_eq!(actual.m, expected);

pub fn set(&mut self, m11: f32, m21: f32, m12: f32, m22: f32)[src]

Sets the internal contents of the matrix

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::new();
actual.set(1.0, 2.0, 3.0, 4.0);
let expected = Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert_eq!(actual, expected);

pub fn transpose(&mut self)[src]

Transposes the matrix's elements

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual.transpose();
let expected = Matrix2::make(1.0, 3.0, 2.0, 4.0);
assert_eq!(actual, expected);

pub fn determinant(&self) -> f32[src]

Find the matrix's determinant

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0).determinant();
assert_eq!(actual, -2.0);

pub fn inverse(&mut self) -> bool[src]

Inverses the matrix

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual.inverse();
let expected = Matrix2::make(-2.0, 1.0, 1.5, -0.5);
assert_eq!(actual, expected);

pub fn is_valid(&self) -> bool[src]

Determine whether or not all elements of the matrix are valid

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert!(actual.is_valid());

Trait Implementations

impl Add<Matrix2> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the + operator.

fn add(self, _rhs: Matrix2) -> Matrix2[src]

Add two matrices

Examples

use vex::Matrix2;
 
let a = Matrix2::make(1.0, 2.0, 3.0, 4.0);
let b = Matrix2::make(5.0, 6.0, 7.0, 8.0);
let actual = a + b;
let expected = Matrix2::make(6.0, 8.0, 10.0, 12.0);
assert_eq!(actual, expected);

impl Add<f32> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the + operator.

fn add(self, _rhs: f32) -> Matrix2[src]

Find the resulting matrix by adding a scalar to a matrix's elements

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0) + 1.0;
let expected = Matrix2::make(2.0, 3.0, 4.0, 5.0);
assert_eq!(actual, expected);

impl AddAssign<Matrix2> for Matrix2[src]

fn add_assign(&mut self, _rhs: Matrix2)[src]

Increment a matrix by another matrix

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual += Matrix2::make(1.0, 2.0, 3.0, 4.0);
let expected = Matrix2::make(2.0, 4.0, 6.0, 8.0);
assert_eq!(actual, expected);

impl AddAssign<f32> for Matrix2[src]

fn add_assign(&mut self, _rhs: f32)[src]

Increment a matrix by a scalar

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual += 10.0;
let expected = Matrix2::make(11.0, 12.0, 13.0, 14.0);
assert_eq!(actual, expected);

impl Clone for Matrix2[src]

impl Copy for Matrix2[src]

impl Debug for Matrix2[src]

impl Display for Matrix2[src]

impl Div<f32> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the / operator.

fn div(self, _rhs: f32) -> Matrix2[src]

Find the resulting matrix by dividing a scalar to a matrix's elements

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0) / 2.0;
let expected = Matrix2::make(0.5, 1.0, 1.5, 2.0);
assert_eq!(actual, expected);

impl DivAssign<f32> for Matrix2[src]

fn div_assign(&mut self, _rhs: f32)[src]

Divide a matrix by a scalar

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual /= 2.0;
let expected = Matrix2::make(0.5, 1.0, 1.5, 2.0);
assert_eq!(actual, expected);

impl Matrix<Vector2> for Matrix2[src]

fn transform_point(&self, point: &Vector2) -> Vector2[src]

Find the resulting vector given a vector and matrix

Examples

use vex::Matrix;
use vex::Matrix2;
use vex::Vector2;

let m = Matrix2::make(1.0, 2.0, 3.0, 4.0);
let v = Vector2::make(1.0, 2.0);
let actual = m.transform_point(&v);
let expected = Vector2::make(7.0, 10.0);
assert_eq!(actual, expected);

impl Mul<Matrix2> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the * operator.

fn mul(self, _rhs: Matrix2) -> Matrix2[src]

Multiply two matrices

Examples

use vex::Matrix2;
 
let a = Matrix2::make(1.0, 2.0, 3.0, 4.0);
let b = Matrix2::make(5.0, 6.0, 7.0, 8.0);
let actual = a * b;
let expected = Matrix2::make(23.0, 34.0, 31.0, 46.0);
assert_eq!(actual, expected);

impl Mul<f32> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the * operator.

fn mul(self, _rhs: f32) -> Matrix2[src]

Find the resulting matrix by multiplying a scalar to a matrix's elements

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0) * 2.0;
let expected = Matrix2::make(2.0, 4.0, 6.0, 8.0);
assert_eq!(actual, expected);

impl MulAssign<Matrix2> for Matrix2[src]

fn mul_assign(&mut self, _rhs: Matrix2)[src]

Multiply a matrix by another matrix

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual *= Matrix2::make(5.0, 6.0, 7.0, 8.0);
let expected = Matrix2::make(23.0, 34.0, 31.0, 46.0);
assert_eq!(actual, expected);

impl MulAssign<f32> for Matrix2[src]

fn mul_assign(&mut self, _rhs: f32)[src]

Multiply a matrix by a scalar

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual *= 2.0;
let expected = Matrix2::make(2.0, 4.0, 6.0, 8.0);
assert_eq!(actual, expected);

impl Neg for Matrix2[src]

type Output = Matrix2

The resulting type after applying the - operator.

fn neg(self) -> Matrix2[src]

Negates the matrix's elements

Examples

use vex::Matrix2;
 
let actual = -Matrix2::make(1.0, 2.0, 3.0, 4.0);
let expected = Matrix2::make(-1.0, -2.0, -3.0, -4.0);
assert_eq!(actual, expected);

impl PartialEq<Matrix2> for Matrix2[src]

fn eq(&self, _rhs: &Matrix2) -> bool[src]

Determines if two matrices' elements are equivalent

Examples

use vex::Matrix2;

assert!(Matrix2::new() == Matrix2::new());

impl Sub<Matrix2> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the - operator.

fn sub(self, _rhs: Matrix2) -> Matrix2[src]

Subtract two matrices

Examples

use vex::Matrix2;
 
let a = Matrix2::make(1.0, 2.0, 3.0, 4.0);
let b = Matrix2::make(5.0, 4.0, 3.0, 2.0);
let actual = a - b;
let expected = Matrix2::make(-4.0, -2.0, 0.0, 2.0);
assert_eq!(actual, expected);

impl Sub<f32> for Matrix2[src]

type Output = Matrix2

The resulting type after applying the - operator.

fn sub(self, _rhs: f32) -> Matrix2[src]

Find the resulting matrix by subtracting a scalar from a matrix's elements

Examples

use vex::Matrix2;
 
let actual = Matrix2::make(1.0, 2.0, 3.0, 4.0) - 10.0;
let expected = Matrix2::make(-9.0, -8.0, -7.0, -6.0);
assert_eq!(actual, expected);

impl SubAssign<Matrix2> for Matrix2[src]

fn sub_assign(&mut self, _rhs: Matrix2)[src]

Decrement a matrix by another matrix

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(2.0, 2.0, 3.0, 5.0);
actual -= Matrix2::make(1.0, 2.0, 3.0, 4.0);
assert_eq!(actual, Matrix2::new());

impl SubAssign<f32> for Matrix2[src]

fn sub_assign(&mut self, _rhs: f32)[src]

Decrement a matrix by a scalar

Examples

use vex::Matrix2;
 
let mut actual = Matrix2::make(1.0, 2.0, 3.0, 4.0);
actual -= 1.0;
let expected = Matrix2::make(0.0, 1.0, 2.0, 3.0);
assert_eq!(actual, expected);

Auto Trait Implementations

impl RefUnwindSafe for Matrix2

impl Send for Matrix2

impl Sync for Matrix2

impl Unpin for Matrix2

impl UnwindSafe for Matrix2

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.