1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use bitflags::bitflags;
use std::{fmt, io};

use crate::Timestamp;

/// Buffer type
///
/// Specific types of devices require buffers of corresponding types.
#[allow(clippy::unreadable_literal)]
#[rustfmt::skip]
#[repr(u32)]
pub enum BufferType {
    VideoCapture        = 1,
    VideoOutput         = 2,
    VideoOverlay        = 3,
    VbiCaputre          = 4,
    VbiOutput           = 5,
    SlicedVbiCapture    = 6,
    SlicedVbiOutput     = 7,
    VideoOutputOverlay  = 8,
    VideoCaptureMplane  = 9,
    VideoOutputMplane   = 10,
    SdrCapture          = 11,
    SdrOutput           = 12,
    MetaCapture         = 13,
    MetaOutput          = 14,

    /// Deprecated, do not use
    Private             = 0x80,
}

bitflags! {
    #[allow(clippy::unreadable_literal)]
    pub struct Flags: u32 {
        /// Buffer is mapped
        const MAPPED                = 0x00000001;
        /// Buffer is queued for processing
        const QUEUED                = 0x00000002;
        /// Buffer is ready
        const DONE                  = 0x00000004;
        /// Image is a keyframe (I-frame)
        const KEYFRAME              = 0x00000008;
        /// Image is a P-frame
        const PFRAME                = 0x00000010;
        /// Image is a B-frame
        const BFRAME                = 0x00000020;
        /// Buffer is ready, but the data contained within is corrupted
        const ERROR                 = 0x00000040;
        /// Buffer is added to an unqueued request
        const IN_REQUEST            = 0x00000080;
        /// Timecode field is valid
        const TIMECODE              = 0x00000100;
        /// Don't return the capture buffer until OUTPUT timestamp changes
        const M2M_HOLD_CAPTURE_BUF  = 0x00000200;
        /// Buffer is prepared for queuing
        const PREPARED              = 0x00000400;
        /// Cache handling flags
        const NO_CACHE_INVALIDATE   = 0x00000800;
        const NO_CACHE_CLEAN        = 0x00001000;
        /// Timestamp type
        const TIMESTAMP_MASK        = 0x0000e000;
        const TIMESTAMP_UNKNOWN     = 0x00000000;
        const TIMESTAMP_MONOTONIC   = 0x00002000;
        const TIMESTAMP_COPY        = 0x00004000;
        /// Timestamp sources
        const TSTAMP_SRC_MASK       = 0x00070000;
        const TSTAMP_SRC_EOF        = 0x00000000;
        const TSTAMP_SRC_SOE        = 0x00010000;
        /// mem2mem encoder/decoder
        const LAST                  = 0x00100000;
        /// request_fd is valid
        const REQUEST_FD            = 0x00800000;
    }
}

impl From<u32> for Flags {
    fn from(flags: u32) -> Flags {
        Flags::from_bits_truncate(flags)
    }
}

impl Into<u32> for Flags {
    fn into(self) -> u32 {
        self.bits()
    }
}

impl fmt::Display for Flags {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

/// Buffer metadata, mostly used not to convolute the main buffer structs
#[derive(Copy, Clone)]
pub struct Metadata {
    /// Sequence number, counting the frames
    pub seq: u32,
    /// Time of capture (usually set by the driver)
    pub timestamp: Timestamp,
    /// Buffer flags
    pub flags: Flags,
}

impl Metadata {
    /// Returns a buffer metadata description
    ///
    /// # Arguments
    ///
    /// * `seq` - Sequence number as counted by the driver
    /// * `ts` - Timestamp as reported by the driver
    /// * `flags` - Flags as set by the driver
    ///
    /// # Example
    ///
    /// ```
    /// use v4l::{buffer, Timestamp};
    ///
    /// let ts = Timestamp::new(0 /* sec */, 0 /* usec */);
    /// let flags = buffer::Flags::from(0);
    /// let meta = buffer::Metadata::new(0, ts, flags);
    /// ```
    pub fn new(seq: u32, ts: Timestamp, flags: Flags) -> Self {
        Metadata {
            seq,
            timestamp: ts,
            flags,
        }
    }
}

/// Represents a host (allocated) or device (mapped) buffer
pub trait Buffer {
    /// Slice of read-only data
    fn data(&self) -> &[u8];

    /// Size of the backing memory region
    fn len(&self) -> usize;

    /// Whether the backing buffer is empty
    fn is_empty(&self) -> bool;

    /// Metadata such as allocation flags, timestamp and more
    fn meta(&self) -> &Metadata;
}

/// Manage buffers for a device
pub trait BufferManager {
    /// Type of the buffers (DMA, mmap, userptr)
    type Buffer;

    /// Allocate buffers
    ///
    /// Returns the number of buffers as reported by the driver.
    ///
    /// # Arguments
    ///
    /// * `count` - Desired number of buffers
    fn allocate(&mut self, count: u32) -> io::Result<u32>;

    /// Release any allocated buffers
    fn release(&mut self) -> io::Result<()>;

    /// Queue a new buffer on the device
    ///
    /// Queueing usually causes the camera hardware to take a picture.
    /// Dequeuing then transfers it to application visible memory.
    fn queue(&mut self) -> io::Result<()>;

    /// Dequeue a buffer and return it to the application
    fn dequeue(&mut self) -> io::Result<Self::Buffer>;
}

/// Streaming I/O
pub trait BufferStream: Iterator {
    type Buffer;

    /// Whether the stream is currently active
    fn active(&self) -> bool;

    /// Start streaming, takes exclusive ownership of a device
    fn start(&mut self) -> io::Result<()>;

    /// Stop streaming, frees all buffers
    fn stop(&mut self) -> io::Result<()>;

    /// Queue a new frame on the device
    fn queue(&mut self) -> io::Result<()>;

    /// Read a queued frame back to memory
    fn dequeue(&mut self) -> io::Result<Self::Buffer>;
}

/// Iterate through a (possibly endless) stream of buffers
///
/// This works more like a generator rather than a classic iterator because frames are captured as
/// they are requested (on the fly). Once an error condition occurs, None is returned so the caller
/// can know about a broken stream.
pub struct StreamIterator<'a, S: BufferStream> {
    /// Mutable stream reference representing exclusive ownership
    stream: &'a mut S,
}

impl<'a, S: BufferStream> StreamIterator<'a, S> {
    pub fn new(stream: &'a mut S) -> Self {
        StreamIterator { stream }
    }
}

impl<'a, S: BufferStream> Iterator for StreamIterator<'a, S> {
    type Item = S::Buffer;

    fn next(&mut self) -> Option<Self::Item> {
        if !self.stream.active() && self.stream.start().is_err() {
            return None;
        }

        let buf = self.stream.dequeue();
        if buf.is_err() {
            return None;
        }

        if self.stream.queue().is_err() {
            return None;
        }

        Some(buf.unwrap())
    }
}