1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use core::convert::TryInto;
use core::mem;
use usb_device::class_prelude::*;
use usb_device::Result;

/// This should be used as `device_class` when building the `UsbDevice`.
pub const USB_CLASS_CDC: u8 = 0x02;

const USB_CLASS_CDC_DATA: u8 = 0x0a;
const CDC_SUBCLASS_ACM: u8 = 0x02;
const CDC_PROTOCOL_NONE: u8 = 0x00;

const CS_INTERFACE: u8 = 0x24;
const CDC_TYPE_HEADER: u8 = 0x00;
const CDC_TYPE_CALL_MANAGEMENT: u8 = 0x01;
const CDC_TYPE_ACM: u8 = 0x02;
const CDC_TYPE_UNION: u8 = 0x06;

const REQ_SEND_ENCAPSULATED_COMMAND: u8 = 0x00;
#[allow(unused)]
const REQ_GET_ENCAPSULATED_COMMAND: u8 = 0x01;
const REQ_SET_LINE_CODING: u8 = 0x20;
const REQ_GET_LINE_CODING: u8 = 0x21;
const REQ_SET_CONTROL_LINE_STATE: u8 = 0x22;

/// Packet level implementation of a CDC-ACM serial port.
///
/// This class can be used directly and it has the least overhead due to directly reading and
/// writing USB packets with no intermediate buffers, but it will not act like a stream-like serial
/// port. The following constraints must be followed if you use this class directly:
///
/// - `read_packet` must be called with a buffer large enough to hold max_packet_size bytes, and the
///   method will return a `WouldBlock` error if there is no packet to be read.
/// - `write_packet` must not be called with a buffer larger than max_packet_size bytes, and the
///   method will return a `WouldBlock` error if the previous packet has not been sent yet.
/// - If you write a packet that is exactly max_packet_size bytes long, it won't be processed by the
///   host operating system until a subsequent shorter packet is sent. A zero-length packet (ZLP)
///   can be sent if there is no other data to send. This is because USB bulk transactions must be
///   terminated with a short packet, even if the bulk endpoint is used for stream-like data.
pub struct CdcAcmClass<'a, B: UsbBus> {
    comm_if: InterfaceNumber,
    comm_ep: EndpointIn<'a, B>,
    data_if: InterfaceNumber,
    read_ep: EndpointOut<'a, B>,
    write_ep: EndpointIn<'a, B>,
    line_coding: LineCoding,
    dtr: bool,
    rts: bool,
}

impl<B: UsbBus> CdcAcmClass<'_, B> {
    /// Creates a new CdcAcmClass with the provided UsbBus and max_packet_size in bytes. For
    /// full-speed devices, max_packet_size has to be one of 8, 16, 32 or 64.
    pub fn new(alloc: &UsbBusAllocator<B>, max_packet_size: u16) -> CdcAcmClass<'_, B> {
        CdcAcmClass {
            comm_if: alloc.interface(),
            comm_ep: alloc.interrupt(8, 255),
            data_if: alloc.interface(),
            read_ep: alloc.bulk(max_packet_size),
            write_ep: alloc.bulk(max_packet_size),
            line_coding: LineCoding {
                stop_bits: StopBits::One,
                data_bits: 8,
                parity_type: ParityType::None,
                data_rate: 8_000,
            },
            dtr: false,
            rts: false,
        }
    }

    /// Gets the maximum packet size in bytes.
    pub fn max_packet_size(&self) -> u16 {
        // The size is the same for both endpoints.
        self.read_ep.max_packet_size()
    }

    /// Gets the current line coding. The line coding contains information that's mainly relevant
    /// for USB to UART serial port emulators, and can be ignored if not relevant.
    pub fn line_coding(&self) -> &LineCoding {
        &self.line_coding
    }

    /// Gets the DTR (data terminal ready) state
    pub fn dtr(&self) -> bool {
        self.dtr
    }

    /// Gets the RTS (request to send) state
    pub fn rts(&self) -> bool {
        self.rts
    }

    /// Writes a single packet into the IN endpoint.
    pub fn write_packet(&mut self, data: &[u8]) -> Result<usize> {
        self.write_ep.write(data)
    }

    /// Reads a single packet from the OUT endpoint.
    pub fn read_packet(&mut self, data: &mut [u8]) -> Result<usize> {
        self.read_ep.read(data)
    }

    /// Gets the address of the IN endpoint.
    pub(crate) fn write_ep_address(&self) -> EndpointAddress {
        self.write_ep.address()
    }
}

impl<B: UsbBus> UsbClass<B> for CdcAcmClass<'_, B> {
    fn get_configuration_descriptors(&self, writer: &mut DescriptorWriter) -> Result<()> {
        writer.iad(
            self.comm_if,
            2,
            USB_CLASS_CDC,
            CDC_SUBCLASS_ACM,
            CDC_PROTOCOL_NONE)?;

        writer.interface(
            self.comm_if,
            USB_CLASS_CDC,
            CDC_SUBCLASS_ACM,
            CDC_PROTOCOL_NONE)?;

        writer.write(
            CS_INTERFACE,
            &[
                CDC_TYPE_HEADER, // bDescriptorSubtype
                0x10, 0x01 // bcdCDC (1.10)
            ])?;

        writer.write(
            CS_INTERFACE,
            &[
                CDC_TYPE_ACM, // bDescriptorSubtype
                0x00 // bmCapabilities
            ])?;

        writer.write(
            CS_INTERFACE,
            &[
                CDC_TYPE_UNION, // bDescriptorSubtype
                self.comm_if.into(), // bControlInterface
                self.data_if.into() // bSubordinateInterface
            ])?;

        writer.write(
            CS_INTERFACE,
            &[
                CDC_TYPE_CALL_MANAGEMENT, // bDescriptorSubtype
                0x00, // bmCapabilities
                self.data_if.into() // bDataInterface
            ])?;

        writer.endpoint(&self.comm_ep)?;

        writer.interface(
            self.data_if,
            USB_CLASS_CDC_DATA,
            0x00,
            0x00)?;

        writer.endpoint(&self.write_ep)?;
        writer.endpoint(&self.read_ep)?;

        Ok(())
    }

    fn reset(&mut self) {
        self.line_coding = LineCoding::default();
        self.dtr = false;
        self.rts = false;
    }

    fn control_in(&mut self, xfer: ControlIn<B>) {
        let req = xfer.request();

        if !(req.request_type == control::RequestType::Class
            && req.recipient == control::Recipient::Interface
            && req.index == u8::from(self.comm_if) as u16)
        {
            return;
        }

        match req.request {
            // REQ_GET_ENCAPSULATED_COMMAND is not really supported - it will be rejected below.
            REQ_GET_LINE_CODING if req.length == 7 => {
                xfer.accept(|data| {
                    data[0..4].copy_from_slice(&self.line_coding.data_rate.to_le_bytes());
                    data[4] = self.line_coding.stop_bits as u8;
                    data[5] = self.line_coding.parity_type as u8;
                    data[6] = self.line_coding.data_bits;

                    Ok(7)
                }).ok();
            },
            _ => { xfer.reject().ok(); },
        }
    }

    fn control_out(&mut self, xfer: ControlOut<B>) {
        let req = xfer.request();

        if !(req.request_type == control::RequestType::Class
            && req.recipient == control::Recipient::Interface
            && req.index == u8::from(self.comm_if) as u16)
        {
            return;
        }

        match req.request {
            REQ_SEND_ENCAPSULATED_COMMAND => {
                // We don't actually support encapsulated commands but pretend we do for standards
                // compatibility.
                xfer.accept().ok();
            },
            REQ_SET_LINE_CODING if xfer.data().len() >= 7 => {
                self.line_coding.data_rate =
                    u32::from_le_bytes(xfer.data()[0..4].try_into().unwrap());
                self.line_coding.stop_bits = xfer.data()[4].into();
                self.line_coding.parity_type = xfer.data()[5].into();
                self.line_coding.data_bits = xfer.data()[6];

                xfer.accept().ok();
            },
            REQ_SET_CONTROL_LINE_STATE => {
                self.dtr = (req.value & 0x0001) != 0;
                self.rts = (req.value & 0x0002) != 0;

                xfer.accept().ok();
            },
            _ => { xfer.reject().ok(); }
        };  
    }
}

/// Number of stop bits for LineCoding
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum StopBits {
    /// 1 stop bit
    One = 0,

    /// 1.5 stop bits
    OnePointFive = 1,

    /// 2 stop bits
    Two = 2,
}

impl From<u8> for StopBits {
    fn from(value: u8) -> Self {
        if value <= 2 {
            unsafe { mem::transmute(value )}
        } else {
            StopBits::One
        }
    }
}

/// Parity for LineCoding
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum ParityType {
    None = 0,
    Odd = 1,
    Event = 2,
    Mark = 3,
    Space = 4,
}

impl From<u8> for ParityType {
    fn from(value: u8) -> Self {
        if value <= 4 {
            unsafe { mem::transmute(value )}
        } else {
            ParityType::None
        }
    }
}

/// Line coding parameters
///
/// This is provided by the host for specifying the standard UART parameters such as baud rate. Can
/// be ignored if you don't plan to interface with a physical UART.
pub struct LineCoding {
    stop_bits: StopBits,
    data_bits: u8,
    parity_type: ParityType,
    data_rate: u32,
}

impl LineCoding {
    /// Gets the number of stop bits for UART communication.
    pub fn stop_bits(&self) -> StopBits { self.stop_bits }

    /// Gets the number of data bits for UART communication.
    pub fn data_bits(&self) -> u8 { self.data_bits }

    /// Gets the parity type for UART communication.
    pub fn parity_type(&self) -> ParityType { self.parity_type }

    /// Gets the data rate in bits per second for UART communication.
    pub fn data_rate(&self) -> u32 { self.data_rate }
}

impl Default for LineCoding {
    fn default() -> Self {
        LineCoding {
            stop_bits: StopBits::One,
            data_bits: 8,
            parity_type: ParityType::None,
            data_rate: 8_000,
        }
    }
}