1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#![no_std]

//! This crate provides a `UnorderedNTuple`, which is a struct that represents unordered tuples of
//! n homogenous elements.
//!
//! ## Crate Features
//! - `std`: Enables dependence on `std` to allow for more features
//! - `serde`: Enabls serializing/deserializing the `UnorderedNTuple` struct in serde
//!
//! By default, both features are enabled.

macro_rules! if_feature {
    ($s:literal, $($i:item)*) => ($(
        #[cfg(feature = $s)] $i
    )*)
}

if_feature!("std", extern crate std; use std::hash::{Hash, Hasher};);

if_feature!(
    "serde",
    use std::{convert::TryInto, marker::PhantomData, fmt, vec::Vec};
    use serde::{
        de::{Deserialize, Deserializer, Error, SeqAccess, Visitor},
        ser::{Serialize, Serializer, SerializeSeq},
    };
);

/// An `UnorderedPair` is a special subtype of `UnorderedNTuple` for only 2 elements. This has been
/// given its own type for ease of use.
///
/// It can also be converted to or from a tuple (similar impls for larger types will come once
/// generics become stronger).
pub type UnorderedPair<T> = UnorderedNTuple<T, 2>;

impl<T> From<(T, T)> for UnorderedPair<T> {
    fn from(tuple: (T, T)) -> Self {
        Self([tuple.0, tuple.1])
    }
}
impl<T> From<UnorderedPair<T>> for (T, T) {
    fn from(pair: UnorderedPair<T>) -> (T, T) {
        let [first, second] = pair.0;
        (first, second)
    }
}

/// A type which represents an unordered tuple of N elements (i.e. an unordered pair if N == 2, and
/// unordered triplet if N == 3, and so on).
///
/// Two `UnorderedNTuple`s are equivalent if their elements are equivalent in any order, for
/// example:
/// ```
/// # use unordered_n_tuple::UnorderedNTuple;
/// assert_eq!(UnorderedNTuple([0, 3, 5]), UnorderedNTuple([5, 0, 3]));
/// ```
#[derive(Copy, Clone, Debug, Eq)]
pub struct UnorderedNTuple<T, const N: usize>(pub [T; N]);

impl<T, const N: usize> From<[T; N]> for UnorderedNTuple<T, N> {
    fn from(arg: [T; N]) -> Self {
        Self(arg)
    }
}

impl<T, const N: usize> From<UnorderedNTuple<T, N>> for [T; N] {
    fn from(arg: UnorderedNTuple<T, N>) -> Self {
        arg.0
    }
}

impl<T, const N: usize> PartialEq for UnorderedNTuple<T, N>
where
    T: PartialEq,
{
    fn eq(&self, other: &UnorderedNTuple<T, N>) -> bool {
        let mut used_indices = [false; N];
        for element in self.0.iter() {
            let mut found = false;
            for (index, other_element) in other.0.iter().enumerate() {
                if used_indices[index] {
                    continue;
                }
                if element == other_element {
                    used_indices[index] = true;
                    found = true;
                    break;
                }
            }
            if !found {
                return false;
            }
        }
        true
    }
}

if_feature!(
    "std",
    impl<T, const N: usize> Hash for UnorderedNTuple<T, N>
    where
        T: Hash + Ord + Clone,
    {
        fn hash<H: Hasher>(&self, state: &mut H) {
            let mut sorted = self.0.clone();
            sorted.sort();
            Hash::hash_slice(&sorted, state);
        }
    }
);

if_feature!(
    "serde",
    impl<T: Serialize, const N: usize> Serialize for UnorderedNTuple<T, N> {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            let mut seq = serializer.serialize_seq(Some(N))?;
            for item in self.0.iter() {
                seq.serialize_element(item)?;
            }
            seq.end()
        }
    }
    struct UnorderedNTupleVisitor<T, const N: usize> {
        _phantom: PhantomData<fn() -> [T; N]>,
    }
    impl<T, const N: usize> UnorderedNTupleVisitor<T, N> {
        fn new() -> Self {
            Self {
                _phantom: PhantomData,
            }
        }
    }
    impl<'de, T, const N: usize> Visitor<'de> for UnorderedNTupleVisitor<T, N>
    where
        T: Deserialize<'de>,
    {
        type Value = UnorderedNTuple<T, N>;

        fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
            f.write_str("Expecting a sequence with N homogenous elements of type T")
        }

        fn visit_seq<S>(self, mut access: S) -> Result<Self::Value, S::Error>
        where
            S: SeqAccess<'de>,
        {
            if access.size_hint() != Some(N) {
                return Err(S::Error::custom("Wrong number of elements"));
            }
            let mut data: Vec<T> = Vec::new();
            for _ in 0..N {
                data.push(access.next_element()?.unwrap())
            }
            Ok(UnorderedNTuple(
                data.try_into().unwrap_or_else(|_| unreachable!()),
            ))
        }
    }
    impl<'de, T: Deserialize<'de>, const N: usize> Deserialize<'de> for UnorderedNTuple<T, N> {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            deserializer.deserialize_seq(UnorderedNTupleVisitor::<T, N>::new())
        }
    }
);