1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#![warn(missing_docs)]

//! Computation with uncertain values.
//!
//! When working with values which are not exactly determined, such as sensor data, it
//! can be difficult to handle uncertainties correctly.
//!
//! The [`Uncertain`] trait makes such computations as natural as regular computations:
//!
//! ```
//! use uncertain::{Uncertain, Distribution};
//! use rand_distr::Normal;
//!
//! // Some inputs about which we are not sure
//! let x = Distribution::from(Normal::new(5.0, 2.0).unwrap());
//! let y = Distribution::from(Normal::new(7.0, 3.0).unwrap());
//!
//! // Do some computations
//! let distance = x.sub(y).map(|diff: f64| diff.abs());
//!
//! // Ask a question about the result
//! let is_it_far = distance.map(|dist| dist > 2.0);
//!
//! // Check how certain the answer is
//! assert_eq!(is_it_far.pr(0.9), false);
//! assert_eq!(is_it_far.pr(0.5), true);
//! ```
//!
//! This works by sampling a Bayesian network which is implicitly created by describing the computation
//! on the uncertain type. The [`Uncertain`] trait only permits tests for simple boolean hypotheses. This
//! is by design: using Wald's [sequential probability ratio test][sprt], evaluation typically
//! takes less than `100` samples.
//!
//! # References
//!
//! The [`Uncertain`] trait exported from the library is an implementation of
//! the paper [`Uncertain<T>`][paper].
//!
//! [paper]: https://www.cs.utexas.edu/users/mckinley/papers/uncertainty-asplos-2014.pdf
//! [sprt]: https://en.wikipedia.org/wiki/Sequential_probability_ratio_test

use adapters::*;
use num_traits::{identities, Float};
use rand_pcg::Pcg32;
use reference::RefUncertain;

mod adapters;
mod boxed;
mod dist;
mod expectation;
mod point;
mod reference;
mod sprt;

pub use boxed::BoxedUncertain;
pub use dist::Distribution;
pub use point::PointMass;

pub use expectation::ConvergenceError;

pub(crate) type Rng = Pcg32;

/// An interface for using uncertain values in computations.
#[must_use = "uncertain values are lazy and do nothing unless queried"]
pub trait Uncertain {
    /// The type of the contained value.
    type Value;

    /// Generate a random sample from the distribution of this
    /// uncertain value. This is similar to [`Distribution::sample`],
    /// with one important difference:
    ///
    /// If the type which implements `Uncertain` is either [`Copy`] or [`Clone`], or if
    /// its references implement `Uncertain`, then it must guarantee that it will return
    /// the same value if queried consecutively with the same epoch (but different rng state).
    ///
    /// This is important when a value is reused within a computation. Consider the following
    /// example:
    /// ```text
    /// x ~ Normal(0, 1)
    /// y ~ Normal(0, 1)
    /// a = x + y
    /// b = a + x
    ///
    /// Correct computation graph:      Incorrect computation graph:
    /// x --+---------+                 x (2nd sample) --+
    ///     |         |                                  |
    ///     |        (+) -> b           x --+           (+) -> b
    ///     |         |                     |            |
    ///    (+) -> a --+                    (+) -> a -----+
    ///     |                               |
    /// y --+                           y --+
    /// ```
    ///
    /// If your type is either [`Copy`] or [`Clone`], it is recommended to implement
    /// [`Distribution`] instead of this trait since any such type
    /// automatically implements [`Into<Distribution>`] in a correct way.
    ///
    /// [`Distribution`]: rand::distributions::Distribution
    /// [`Distribution::sample`]: rand::distributions::Distribution::sample
    /// [`Into<Distribution>`]: Distribution
    fn sample(&self, rng: &mut Rng, epoch: usize) -> Self::Value;

    /// Determine if the probability of obtaining `true` form this uncertain
    /// value is at least `probability`.
    ///
    /// This function evaluates a statistical test by sampling the underlying
    /// uncertain value and determining if it is plausible that it has been
    /// generated from a [Bernoulli distribution][bernoulli]
    /// with a value of p of at least `probability`. (I.e. if hypothesis
    /// `H_0: p >= probability` is plausible.)
    ///
    /// The underlying implementation uses the [sequential probability ratio test][sprt],
    /// which takes the least number of samples necessary to establish or reject
    /// a hypothesis. In practice this means that usually only `O(10)` samples
    /// are required.
    ///
    /// [bernoulli]: https://en.wikipedia.org/wiki/Bernoulli_distribution
    /// [sprt]: https://en.wikipedia.org/wiki/Sequential_probability_ratio_test
    ///
    /// # Panics
    ///
    /// Panics if `probability <= 0 || probability >= 1`.
    ///
    /// # Examples
    ///
    /// Basic usage: test if some event is more likely than not.
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Bernoulli;
    ///
    /// let x = Distribution::from(Bernoulli::new(0.8).unwrap());
    /// assert_eq!(x.pr(0.5), true);
    ///
    /// let y = Distribution::from(Bernoulli::new(0.3).unwrap());
    /// assert_eq!(y.pr(0.5), false);
    /// ```
    fn pr(&self, probability: f32) -> bool
    where
        Self::Value: Into<bool>,
    {
        if probability <= 0.0 || probability >= 1.0 {
            panic!("Probability {:?} must be in (0, 1)", probability);
        }

        sprt::compute(self, probability)
    }

    /// Calculate the expectation of this uncertain value to the desired
    /// precision. This can be useful e.g. when displaying values in a user
    /// interface.
    ///
    /// If the expected value does not converge to within the desired precision,
    /// a [`ConvergenceError`](ConvergenceError) is returned which can be used
    /// to obtain the non converged expectation and estimated error.
    ///
    /// Note that this value should typically not be used in further computation or in
    /// comparisons. It is usually more expensive to calculate than [`pr`](Uncertain::pr) and
    /// calculations or comparisons using the resulting value can be miss-leading.
    ///
    /// # Panics
    ///
    /// Panics if `precision <= 0`.
    ///
    /// # Example
    ///
    /// If we have a [bimodal][multi-modal] distribution, the expected value can lead to confusing
    /// results:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Bernoulli;
    ///
    /// let choice = Distribution::from(Bernoulli::new(0.6).unwrap());
    /// let value = choice.map(|c| if c { 1.0 } else { -1.0 }).into_ref();
    ///
    /// let bigger_eq_zero = (&value).map(|v| v >= 0.0);
    /// let bigger_eq_half = (&value).map(|v| v >= 0.5);
    ///
    /// assert_eq!(bigger_eq_zero.pr(0.5), true);
    /// assert_eq!(bigger_eq_half.pr(0.5), true); // this is true
    ///
    /// let expected_value = value.expect(0.1).unwrap();
    /// assert_eq!(expected_value >= 0.0, true);
    /// assert_eq!(expected_value >= 0.5, false); // but this is not :o
    /// ```
    ///
    /// # Details
    ///
    /// To take as few samples as possible, this method utilizes an online sampling
    /// strategy to compute estimates of the mean and variance of the distribution
    /// modeled by the uncertain value.
    ///
    /// To determine if the mean has converged to the desired precision, the
    /// variance of the estimate (i.e. `var(E(x))`) is computed, assuming
    /// the samples are [identically and independently distributed][iid].
    ///
    /// The function returns if the [two sigma confidence interval][two-sigma] (i.e. `2 * sqrt(var(E(x)))`)
    /// is smaller than the desired precision and the returned estimate lies within
    /// plus/ minus precision of the true value with approximately `95%` probability.
    ///
    /// [iid]: https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
    /// [multi-modal]: https://en.wikipedia.org/wiki/Multimodal_distribution
    /// [two-sigma]: https://en.wikipedia.org/wiki/68–95–99.7_rule
    fn expect(&self, precision: Self::Value) -> Result<Self::Value, ConvergenceError<Self::Value>>
    where
        Self::Value: Float,
    {
        if precision <= identities::zero() {
            panic!("Precision must be larger than 0");
        }

        expectation::compute(self, precision)
    }

    /// Box this uncertain value, such that it's type becomes opaque. This is
    /// necessary when you want to mix different sources for uncertain values
    /// e.g. to return different distributions inside [`flat_map`](Self::flat_map).
    ///
    /// This boxes the underlying uncertain value using a trait object and should
    /// only be used if necessary.
    ///
    /// # Examples
    ///
    /// Basic example:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution, PointMass};
    /// use rand_distr::{Bernoulli, StandardNormal};
    ///
    /// let choice = Distribution::from(Bernoulli::new(0.5).unwrap());
    /// let value = choice.flat_map(|fixed| if fixed {
    ///     PointMass::new(5.0).into_boxed()
    /// } else {
    ///     Distribution::from(StandardNormal).into_boxed()
    /// });
    /// assert!(value.map(|v| v > 0.25).pr(0.5));
    /// ```
    fn into_boxed(self) -> BoxedUncertain<Self::Value>
    where
        Self: 'static + Sized + Send,
    {
        BoxedUncertain::new(self)
    }

    /// Bundle this uncertain value with a cache, so it can be reused in a calculation.
    ///
    /// Uncertain values should normally not implement `Copy` or `Clone`, since the same value
    /// is only allowed to be sampled once for every epoch (see [`sample`](Self::sample)).
    /// This wrapper allows a value to be reused by caching the sample result for every epoch and
    /// implementing [`Uncertain`] for references.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Normal;
    ///
    /// let x = Distribution::from(Normal::new(5.0, 2.0).unwrap()).into_ref();
    /// let y = Distribution::from(Normal::new(10.0, 5.0).unwrap());
    /// let a = y.add(&x);
    /// let b = a.add(&x);
    ///
    /// let bigger_than_twelve = b.map(|v| v > 12.0);
    /// assert!(bigger_than_twelve.pr(0.5));
    /// ```
    fn into_ref(self) -> RefUncertain<Self>
    where
        Self: Sized,
        Self::Value: Clone,
    {
        RefUncertain::new(self)
    }

    /// Takes an uncertain value and produces another which
    /// generates values by calling a closure.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Normal;
    ///
    /// let x = Distribution::from(Normal::new(0.0, 1.0).unwrap());
    /// let y = x.map(|x| 5.0 + x);
    /// let bigger_eq_four = y.map(|v| v >= 4.0);
    /// assert!(bigger_eq_four.pr(0.5));
    /// ```
    fn map<O, F>(self, func: F) -> Map<Self, F>
    where
        Self: Sized,
        F: Fn(Self::Value) -> O,
    {
        Map::new(self, func)
    }

    /// Takes an uncertain value and produces another which
    /// generates values by calling a closure to generate
    /// fresh uncertain types that can depend on the value
    /// contained in self.
    ///
    /// This is useful for cases where the distribution of
    /// an uncertain value depends on another.
    ///
    /// # Example
    ///
    /// Basic example: model two poker chip factories. The first of
    /// which produces chips with `N ~ Binomial(20, 0.3)` and
    /// the second of which produces chips with `M ~ Binomial(50, 0.5)`.
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::{Binomial, Bernoulli};
    ///
    /// let is_first_factory = Distribution::from(Bernoulli::new(0.5).unwrap());
    /// let number_of_chips = is_first_factory
    ///     .flat_map(|is_first| if is_first {
    ///         Distribution::from(Binomial::new(20, 0.3).unwrap())
    ///     } else {
    ///         Distribution::from(Binomial::new(50, 0.5).unwrap())
    ///     });
    /// assert!(number_of_chips.map(|n| n < 25).pr(0.5));
    /// ```
    fn flat_map<O, F>(self, func: F) -> FlatMap<Self, F>
    where
        Self: Sized,
        O: Uncertain,
        F: Fn(Self::Value) -> O,
    {
        FlatMap::new(self, func)
    }

    /// Combine two uncertain values using a closure. The closure
    /// `func` receives `self` as the first, and `other` as the
    /// second argument.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Bernoulli;
    ///
    /// let x = Distribution::from(Bernoulli::new(0.5).unwrap());
    /// let y = Distribution::from(Bernoulli::new(0.5).unwrap());
    /// let are_equal = x.join(y, |x, y| x == y);
    /// assert!(are_equal.pr(0.5));
    /// ```
    fn join<O, U, F>(self, other: U, func: F) -> Join<Self, U, F>
    where
        Self: Sized,
        U: Uncertain,
        F: Fn(Self::Value, U::Value) -> O,
    {
        Join::new(self, other, func)
    }

    /// Negate the boolean contained in self. This is a shorthand
    /// for `x.map(|b| !b)`.
    ///
    /// # Examples
    ///
    /// Inverting a Bernoulli distribution:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Bernoulli;
    ///
    /// let x = Distribution::from(Bernoulli::new(0.1).unwrap());
    /// assert!(x.not().pr(0.9));
    /// ```
    fn not(self) -> Not<Self>
    where
        Self: Sized,
        Self::Value: Into<bool>,
    {
        Not::new(self)
    }

    /// Combines two boolean values. This should be preferred over
    /// `x.join(y, |x, y| x && y)`, since it uses short-circuit logic
    /// to avoid sampling `y` if `x` is already false.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Bernoulli;
    ///
    /// let x = Distribution::from(Bernoulli::new(0.5).unwrap());
    /// let y = Distribution::from(Bernoulli::new(0.5).unwrap());
    /// let both = x.and(y);
    /// assert_eq!(both.pr(0.5), false);
    /// assert_eq!(both.not().pr(0.5), true);
    /// ```
    fn and<U>(self, other: U) -> And<Self, U>
    where
        Self: Sized,
        Self::Value: Into<bool>,
        U: Uncertain,
        U::Value: Into<bool>,
    {
        And::new(self, other)
    }

    /// Combines two boolean values. This should be preferred over
    /// `x.join(y, |x, y| x || y)`, since it uses short-circuit logic
    /// to avoid sampling `y` if `x` is already true.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Bernoulli;
    ///
    /// let x = Distribution::from(Bernoulli::new(0.3).unwrap());
    /// let y = Distribution::from(Bernoulli::new(0.3).unwrap());
    /// let either = x.or(y);
    /// assert_eq!(either.pr(0.5), true);
    /// assert_eq!(either.not().pr(0.5), false);
    /// ```
    fn or<U>(self, other: U) -> Or<Self, U>
    where
        Self: Sized,
        Self::Value: Into<bool>,
        U: Uncertain,
        U::Value: Into<bool>,
    {
        Or::new(self, other)
    }

    /// Add two uncertain values. This is a shorthand
    /// for `x.join(y, |x, y| x + y)`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Normal;
    ///
    /// let x = Distribution::from(Normal::new(1.0, 1.0).unwrap());
    /// let y = Distribution::from(Normal::new(4.0, 1.0).unwrap());
    /// assert!(x.add(y).map(|sum| sum >= 5.0).pr(0.5));
    /// ```
    fn add<U>(self, other: U) -> Sum<Self, U>
    where
        Self: Sized,
        U: Uncertain,
        Self::Value: std::ops::Add<U::Value>,
    {
        Sum::new(self, other)
    }

    /// Subtract two uncertain values. This is a shorthand
    /// for `x.join(y, |x, y| x - y)`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Normal;
    ///
    /// let x = Distribution::from(Normal::new(7.0, 1.0).unwrap());
    /// let y = Distribution::from(Normal::new(2.0, 1.0).unwrap());
    /// assert!(x.sub(y).map(|diff| diff >= 5.0).pr(0.5));
    /// ```
    fn sub<U>(self, other: U) -> Difference<Self, U>
    where
        Self: Sized,
        U: Uncertain,
        Self::Value: std::ops::Sub<U::Value>,
    {
        Difference::new(self, other)
    }

    /// Multiply two uncertain values. This is a shorthand
    /// for `x.join(y, |x, y| x * y)`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Normal;
    ///
    /// let x = Distribution::from(Normal::new(4.0, 1.0).unwrap());
    /// let y = Distribution::from(Normal::new(2.0, 1.0).unwrap());
    /// assert!(x.mul(y).map(|prod| prod >= 4.0).pr(0.5));
    /// ```
    fn mul<U>(self, other: U) -> Product<Self, U>
    where
        Self: Sized,
        U: Uncertain,
        Self::Value: std::ops::Mul<U::Value>,
    {
        Product::new(self, other)
    }

    /// Divide two uncertain values. This is a shorthand
    /// for `x.join(y, |x, y| x / y)`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use uncertain::{Uncertain, Distribution};
    /// use rand_distr::Normal;
    ///
    /// let x = Distribution::from(Normal::new(100.0, 1.0).unwrap());
    /// let y = Distribution::from(Normal::new(2.0, 1.0).unwrap());
    /// assert!(x.div(y).map(|prod| prod <= 50.0).pr(0.5));
    /// ```
    fn div<U>(self, other: U) -> Ratio<Self, U>
    where
        Self: Sized,
        U: Uncertain,
        Self::Value: std::ops::Div<U::Value>,
    {
        Ratio::new(self, other)
    }
}