1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//!
//! Algebraic _multiplicative_ _groups_.
//!
//! An algebraic _multiplicative_ _group_ is a _multiplicative_ _monoid_
//! `M`, where each _invertible_ group element `g` has a unique
//! multiplicative _inverse_ denoted `g^-1`. The inverse operation is
//! called _invert_.
//!
//! # Axioms
//!
//! ```notrust
//! ∀g, 1 ∈ M
//!
//! Inverse: ∃g^-1 ∈ M: g × g^-1 = g^-1 × g = 1.
//! ```
//!
//! # References
//!
//! See [references] for a formal definition of a multiplicative
//! group.
//!
#![doc(include = "../doc/references.md")]

use crate::numeric::*;
use crate::monoid::*;
use crate::helpers::*;


///
/// An algebraic _multiplicative group_.
///
pub trait MulGroup: MulMonoid {

  /// The unique _multiplicative_ _inverse_ of a group element.
  /// Inversion is only defined for _invertible_ group elements.
  fn invert(&self) -> Self;


  /// Test for an _invertible_ group element.
  fn is_invertible(&self) -> bool;


  /// The multiplicative "division" of two group elements.
  fn div(&self, other: &Self) -> Self {
    self.mul(&other.invert())
  }
}


///
/// The _left_ _multiplicative_ _inverse_ axiom.
///
pub fn left_inverse<T: MulGroup>(x: &T) -> bool {
  x.invert().mul(x) == T::one()
}


///
/// The _right_ _multiplicative_ _inverse_ axiom.
///
pub fn right_inverse<T: MulGroup>(x: &T) -> bool {
  x.mul(&x.invert()) == T::one()
}


///
/// The _two_ _sided_ _multiplicative_ inverse axiom.
///
pub fn inverse<T: MulGroup>(x: &T) -> bool {
  left_inverse(x) && right_inverse(x)
}


///
/// The _left_ _numerical_ _multiplicative_ _inverse_ axiom.
///
pub fn num_left_inverse<T: MulGroup + NumEq>(x: &T, eps: &T::Eps) -> bool {
  x.invert().mul(x).num_eq(&T::one(), eps)
}


///
/// The _right_ _numerical_ _multiplicative_ _inverse_ axiom.
///
pub fn num_right_inverse<T: MulGroup + NumEq>(x: &T, eps: &T::Eps) -> bool {
  x.mul(&x.invert()).num_eq(&T::one(), eps)
}


///
/// The _two_ _sided_ _numerical_ _multiplicative_ _inverse_ axiom.
///
pub fn num_inverse<T: MulGroup + NumEq>(x: &T, eps: &T::Eps) -> bool {
  num_left_inverse(x, eps) && num_right_inverse(x, eps)
}


///
/// A macro for `MulGroup` implementations for built-in floating point
/// types. Probably not needed if Rust had a `Float` super-trait.
///
macro_rules! float_mul_group {
  ($type:ty) => {
    impl MulGroup for $type {

      /// Inversion is just floating point inversion.
      fn invert(&self) -> Self {
        1.0 / *self
      }

      /// Non-zero elements are invertible.
      fn is_invertible(&self) -> bool {
        *self != 0.0
      }
    }
  };

  ($type:ty, $($others:ty),+) => {
    float_mul_group! {$type}
    float_mul_group! {$($others),+}
  };
}


// Multiplicative group floating point types.
float_mul_group! {
  f32, f64
}


///
/// 0-tuples form a multiplicative group.
///
impl MulGroup for () {

  /// Inverted value can only be `()`.
  fn invert(&self) -> Self {}

  /// The only value is invertible.
  fn is_invertible(&self) -> bool {
    true
  }
}


///
/// 1-tuples form a multiplicative group when their items do.
///
impl<A: MulGroup> MulGroup for (A,) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), )
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible()
  }
}


///
/// 2-tuples form a multiplicative group when their items do.
///
impl<A: MulGroup, B: MulGroup> MulGroup for (A, B) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), self.1.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible() && self.1.is_invertible()
  }
}


///
/// 3-tuples form a multiplicative group when their items do.
///
impl<A: MulGroup, B: MulGroup, C: MulGroup> MulGroup for (A, B, C) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    let (a, b, c) = self;

    (a.invert(), b.invert(), c.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    let (a, b, c) = self;

    a.is_invertible() && b.is_invertible() && c.is_invertible()
  }
}


///
/// A macro for `MulGroup` implementations for arrays. Maybe not needed
/// if Rust had _const_ _generics_.
///
macro_rules! array_mul_group {
  ($size:expr) => {
    impl<T: Copy + MulGroup> MulGroup for [T; $size] {

     // All array items must be invertible.
     fn is_invertible(&self) -> bool {
       self.into_iter().all(|&x| x.is_invertible())
     }


     // Invert all array items.
     fn invert(&self) -> Self {
       self.map(&|&x| x.invert())
     }
    }
  };

  ($size:expr, $($others:expr),+) => {
    array_mul_group! {$size}
    array_mul_group! {$($others),+}
  };
}


// Array multiplicative group types.
array_mul_group! {
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
}


// Module unit tests are in a sub-module.
#[cfg(test)]
mod tests;