1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
// Copyright 2017 Jeremy Wall <jeremy@marzhillstudios.com>
//
//  Licensed under the Apache License, Version 2.0 (the "License");
//  you may not use this file except in compliance with the License.
//  You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.

//! The definitions of the ucg AST and Tokens.
use std;
use std::borrow::Borrow;
use std::cmp::Eq;
use std::cmp::Ordering;
use std::cmp::PartialEq;
use std::cmp::PartialOrd;
use std::convert::{Into, TryFrom, TryInto};
use std::fmt;
use std::hash::Hash;
use std::hash::Hasher;
use std::path::PathBuf;
use std::rc::Rc;

use abortable_parser;

use crate::build::scope::Scope;
use crate::build::Val;
use crate::error::BuildError;

pub mod printer;
pub mod walk;

pub use walk::Walker;

#[derive(Debug, PartialEq, Clone)]
pub enum TemplatePart {
    Str(Vec<char>),
    PlaceHolder(usize),
    Expression(Expression),
}

macro_rules! enum_type_equality {
    ( $slf:ident, $r:expr, $( $l:pat ),* ) => {
        match $slf {
        $(
            $l => {
                if let $l = $r {
                    true
                } else {
                    false
                }
            }
        )*
        }
    }
}

/// Represents a line and a column position in UCG code.
///
/// It is used for generating error messages mostly. Most all
/// parts of the UCG AST have a positioned associated with them.
#[derive(Debug, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
pub struct Position {
    pub file: Option<PathBuf>,
    pub line: usize,
    pub column: usize,
    pub offset: usize,
}

impl Position {
    /// Construct a new Position.
    pub fn new(line: usize, column: usize, offset: usize) -> Self {
        Position {
            file: None,
            line: line,
            column: column,
            offset: offset,
        }
    }

    pub fn with_file<P: Into<PathBuf>>(mut self, file: P) -> Self {
        self.file = Some(file.into());
        self
    }
}

impl<'a> From<&'a Position> for Position {
    fn from(source: &'a Position) -> Self {
        source.clone()
    }
}

impl std::fmt::Display for Position {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        if let Some(ref file) = self.file {
            write!(f, "file: {} ", file.to_string_lossy().to_string())?;
        }
        write!(f, "line: {} column: {}", self.line, self.column)
    }
}

/// Defines the types of tokens in UCG syntax.
#[derive(Debug, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
pub enum TokenType {
    EMPTY,
    BOOLEAN,
    END,
    WS,
    COMMENT,
    QUOTED,
    PIPEQUOTE,
    DIGIT,
    BAREWORD,
    PUNCT,
}

/// Defines a Token representing a building block of UCG syntax.
///
/// Token's are passed to the parser stage to be parsed into an AST.
#[derive(Debug, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
pub struct Token {
    pub typ: TokenType,
    pub fragment: String,
    pub pos: Position,
}

impl Token {
    /// Constructs a new Token with a type and line and column information.
    pub fn new<S: Into<String>, P: Into<Position>>(f: S, typ: TokenType, p: P) -> Self {
        Self::new_with_pos(f, typ, p.into())
    }

    // Constructs a new Token with a type and a Position.
    pub fn new_with_pos<S: Into<String>>(f: S, typ: TokenType, pos: Position) -> Self {
        Token {
            typ: typ,
            fragment: f.into(),
            pos: pos,
        }
    }
}

impl abortable_parser::Positioned for Token {
    fn line(&self) -> usize {
        self.pos.line
    }
    fn column(&self) -> usize {
        self.pos.column
    }
}

impl Borrow<str> for Token {
    fn borrow(&self) -> &str {
        &self.fragment
    }
}

/// Helper macro for making a Positioned Value.
macro_rules! value_node {
    ($v:expr, $p:expr) => {
        PositionedItem::new_with_pos($v, $p)
    };
}

/// Helper macro for making a Token.
#[allow(unused_macros)]
macro_rules! make_tok {
    (EOF => $i:expr) => {
        Token::new("", TokenType::END, &$i)
    };

    (WS => $i:expr) => {
        Token::new("", TokenType::WS, &$i)
    };

    (CMT => $e:expr, $i:expr) => {
        Token::new($e, TokenType::COMMENT, &$i)
    };

    (QUOT => $e:expr, $i:expr) => {
        Token::new($e, TokenType::QUOTED, &$i)
    };

    (PUNCT => $e:expr, $i:expr) => {
        Token::new($e, TokenType::PUNCT, &$i)
    };

    (DIGIT => $e:expr, $i:expr) => {
        Token::new($e, TokenType::DIGIT, &$i)
    };

    ($e:expr, $i:expr) => {
        Token::new($e, TokenType::BAREWORD, &$i)
    };
}

/// Helper macro for making expressions.
#[allow(unused_macros)]
macro_rules! make_expr {
    ($e:expr, $i:expr) => {
        Expression::Simple(Value::Symbol(PositionedItem::new_with_pos(
            $e.to_string(),
            $i,
        )))
    };

    ($e:expr => int, $i:expr) => {
        Expression::Simple(Value::Int(PositionedItem::new_with_pos($e, $i)))
    };
}

/// An ordered list of Name = Value pairs.
///
/// This is usually used as the body of a tuple in the UCG AST.
pub type FieldList = Vec<(Token, Expression)>; // Token is expected to be a symbol

pub type ShapeTuple = Vec<(Token, Shape)>;
pub type ShapeList = Vec<Shape>;

#[derive(PartialEq, Debug, Clone)]
pub struct FuncShapeDef {
    args: Vec<Shape>,
    ret: Box<Shape>,
}

#[derive(PartialEq, Debug, Clone)]
pub struct ModuleShapeDef {
    items: ShapeTuple,
    ret: Box<Shape>,
}

macro_rules! value_enum {
    ($doc:meta $i:tt, $t:ty, $l:ty, $($extra:tt)*) => {
        #[$doc]
        #[derive(PartialEq, Debug, Clone)]
        pub enum $i {
            // Simple Values
            Empty(Position),
            Boolean(PositionedItem<bool>),
            Int(PositionedItem<i64>),
            Float(PositionedItem<f64>),
            Str(PositionedItem<String>),
            Symbol(PositionedItem<String>),
            // Complex Values
            Tuple(PositionedItem<$t>),
            List($l),
            // Extra items
            $( $extra )*
        }
    }
}

value_enum!(
    doc="Value types represent the Values that UCG can have."
    Value,
    FieldList,
    ListDef,
);

value_enum!(
    doc="Shapes represent the types that UCG values or expressions can have."
    Shape,
    ShapeTuple,
    PositionedItem<ShapeList>,
    Func(FuncShapeDef),
    Module(ModuleShapeDef),
);

impl Value {
    /// Returns the type name of the Value it is called on as a string.
    pub fn type_name(&self) -> String {
        match self {
            &Value::Empty(_) => "EmptyValue".to_string(),
            &Value::Boolean(_) => "Boolean".to_string(),
            &Value::Int(_) => "Integer".to_string(),
            &Value::Float(_) => "Float".to_string(),
            &Value::Str(_) => "String".to_string(),
            &Value::Symbol(_) => "Symbol".to_string(),
            &Value::Tuple(_) => "Tuple".to_string(),
            &Value::List(_) => "List".to_string(),
        }
    }

    fn fields_to_string(v: &FieldList) -> String {
        let mut buf = String::new();
        buf.push_str("{\n");
        for ref t in v.iter() {
            buf.push_str("\t");
            buf.push_str(&t.0.fragment);
            buf.push_str("\n");
        }
        buf.push_str("}");
        return buf;
    }

    fn elems_to_string(v: &Vec<Expression>) -> String {
        return format!("{}", v.len());
    }

    /// Returns a stringified version of the Value.
    pub fn to_string(&self) -> String {
        match self {
            &Value::Empty(_) => "EmptyValue".to_string(),
            &Value::Boolean(ref b) => format!("{}", b.val),
            &Value::Int(ref i) => format!("{}", i.val),
            &Value::Float(ref f) => format!("{}", f.val),
            &Value::Str(ref s) => format!("{}", s.val),
            &Value::Symbol(ref s) => format!("{}", s.val),
            &Value::Tuple(ref fs) => format!("{}", Self::fields_to_string(&fs.val)),
            &Value::List(ref def) => format!("[{}]", Self::elems_to_string(&def.elems)),
        }
    }

    /// Returns the position for a Value.
    pub fn pos(&self) -> &Position {
        match self {
            &Value::Empty(ref pos) => pos,
            &Value::Boolean(ref b) => &b.pos,
            &Value::Int(ref i) => &i.pos,
            &Value::Float(ref f) => &f.pos,
            &Value::Str(ref s) => &s.pos,
            &Value::Symbol(ref s) => &s.pos,
            &Value::Tuple(ref fs) => &fs.pos,
            &Value::List(ref def) => &def.pos,
        }
    }

    /// Returns true if called on a Value that is the same type as itself.
    pub fn type_equal(&self, target: &Self) -> bool {
        enum_type_equality!(
            self,
            target,
            &Value::Empty(_),
            &Value::Boolean(_),
            &Value::Int(_),
            &Value::Float(_),
            &Value::Str(_),
            &Value::Symbol(_),
            &Value::Tuple(_),
            &Value::List(_)
        )
    }

    fn derive_shape(&self) -> Result<Shape, BuildError> {
        let shape = match self {
            Value::Empty(p) => Shape::Empty(p.clone()),
            Value::Boolean(p) => Shape::Boolean(p.clone()),
            Value::Int(p) => Shape::Int(p.clone()),
            Value::Float(p) => Shape::Float(p.clone()),
            Value::Str(p) => Shape::Str(p.clone()),
            // Symbols in a shape are placeholder. They allow a form of genericity
            // in the shape. They can be any type and are only refined down.
            // by their presence in an expression.
            Value::Symbol(p) => Shape::Symbol(p.clone()),
            Value::Tuple(flds) => {
                let mut field_shapes = Vec::new();
                for &(ref tok, ref expr) in &flds.val {
                    field_shapes.push((tok.clone(), expr.try_into()?));
                }
                Shape::Tuple(PositionedItem::new(field_shapes, flds.pos.clone()))
            }
            Value::List(flds) => {
                let mut field_shapes = Vec::new();
                for f in &flds.elems {
                    field_shapes.push(f.try_into()?);
                }
                Shape::List(PositionedItem::new(field_shapes, flds.pos.clone()))
            }
        };
        Ok(shape)
    }
}

impl TryFrom<&Value> for Shape {
    type Error = crate::error::BuildError;

    fn try_from(v: &Value) -> Result<Self, Self::Error> {
        v.derive_shape()
    }
}

/// Represents an expansion of a Macro that is expected to already have been
/// defined.
#[derive(PartialEq, Debug, Clone)]
pub struct CallDef {
    pub funcref: Value,
    pub arglist: Vec<Expression>,
    pub pos: Position,
}

/// The allowable types to which you can perform a primitive cast.
#[derive(PartialEq, Debug, Clone)]
pub enum CastType {
    Int,
    Float,
    Str,
    Bool,
}

impl fmt::Display for CastType {
    fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result {
        write!(
            w,
            "{}",
            match self {
                CastType::Int => "int",
                CastType::Float => "float",
                CastType::Bool => "bool",
                CastType::Str => "str",
            }
        )
    }
}

/// Represents a cast of a target to a primitive type.
#[derive(PartialEq, Debug, Clone)]
pub struct CastDef {
    pub cast_type: CastType,
    pub target: Box<Expression>,
    pub pos: Position,
}

/// Encodes a select expression in the UCG AST.
#[derive(PartialEq, Debug, Clone)]
pub struct SelectDef {
    pub val: Box<Expression>,
    pub default: Option<Box<Expression>>,
    pub tuple: FieldList,
    pub pos: Position,
}

/// Adds position information to any type `T`.
#[derive(Debug, Clone)]
pub struct PositionedItem<T> {
    pub pos: Position,
    pub val: T,
}

impl<T: std::fmt::Display> std::fmt::Display for PositionedItem<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        write!(f, "{}", self.val)
    }
}

impl<T> PositionedItem<T> {
    /// Constructs a new Positioned<T> with a value, line, and column information.
    pub fn new<P: Into<Position>>(v: T, p: P) -> Self {
        Self::new_with_pos(v, p.into())
    }

    /// Constructs a new Positioned<T> with a value and a Position.
    pub fn new_with_pos(v: T, pos: Position) -> Self {
        PositionedItem { pos: pos, val: v }
    }
}

impl<T: PartialEq> PartialEq for PositionedItem<T> {
    fn eq(&self, other: &Self) -> bool {
        self.val == other.val
    }
}

impl<T: Eq> Eq for PositionedItem<T> {}

impl<T: Ord> Ord for PositionedItem<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.val.cmp(&other.val)
    }
}

impl<T: PartialOrd> PartialOrd for PositionedItem<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.val.partial_cmp(&other.val)
    }
}

impl<T: Hash> Hash for PositionedItem<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.val.hash(state);
    }
}

impl<'a> From<&'a Token> for PositionedItem<String> {
    fn from(t: &'a Token) -> PositionedItem<String> {
        PositionedItem {
            pos: t.pos.clone(),
            val: t.fragment.to_string(),
        }
    }
}

impl<'a> From<&'a PositionedItem<String>> for PositionedItem<String> {
    fn from(t: &PositionedItem<String>) -> PositionedItem<String> {
        PositionedItem {
            pos: t.pos.clone(),
            val: t.val.clone(),
        }
    }
}

/// Encodes a func expression in the UCG AST..
///
/// A func is a pure function over a tuple.
#[derive(PartialEq, Debug, Clone)]
pub struct FuncDef {
    pub scope: Option<Scope>,
    pub argdefs: Vec<PositionedItem<String>>,
    pub fields: Box<Expression>,
    pub pos: Position,
}

/// Specifies the types of binary operations supported in
/// UCG expression.
#[derive(Debug, PartialEq, Clone)]
pub enum BinaryExprType {
    // Math
    Add,
    Sub,
    Mul,
    Div,
    Mod,
    // Boolean
    AND,
    OR,
    // Comparison
    Equal,
    GT,
    LT,
    NotEqual,
    GTEqual,
    LTEqual,
    REMatch,
    NotREMatch,
    IN,
    IS,
    // Selector operator
    DOT,
}

impl BinaryExprType {
    /// Returns the precedence level for the binary operator.
    ///
    /// Higher values bind tighter than lower values.
    pub fn precedence_level(&self) -> u32 {
        match self {
            // Equality operators are least tightly bound
            BinaryExprType::Equal => 1,
            BinaryExprType::NotEqual => 1,
            BinaryExprType::GTEqual => 1,
            BinaryExprType::LTEqual => 1,
            BinaryExprType::GT => 1,
            BinaryExprType::LT => 1,
            BinaryExprType::REMatch => 1,
            BinaryExprType::NotREMatch => 1,
            BinaryExprType::IN => 2,
            BinaryExprType::IS => 2,
            // Sum operators are next least tightly bound
            BinaryExprType::Add => 3,
            BinaryExprType::Sub => 3,
            // Product operators are next tightly bound
            BinaryExprType::Mul => 4,
            BinaryExprType::Div => 4,
            BinaryExprType::Mod => 4,
            // Boolean operators bind tighter than math
            BinaryExprType::AND => 5,
            BinaryExprType::OR => 5,
            // Dot operators are most tightly bound.
            BinaryExprType::DOT => 6,
        }
    }
}

/// Represents an expression with a left and a right side.
#[derive(Debug, PartialEq, Clone)]
pub struct BinaryOpDef {
    pub kind: BinaryExprType,
    pub left: Box<Expression>,
    pub right: Box<Expression>,
    pub pos: Position,
}

/// Encodes a tuple Copy expression in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct CopyDef {
    pub selector: Value,
    pub fields: FieldList,
    pub pos: Position,
}

/// Encodes one of two possible forms for format expression arguments.
#[derive(Debug, PartialEq, Clone)]
pub enum FormatArgs {
    List(Vec<Expression>),
    Single(Box<Expression>),
}

/// Encodes a format expression in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct FormatDef {
    pub template: String,
    pub args: FormatArgs,
    pub pos: Position,
}

/// Encodes an import statement in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct IncludeDef {
    pub pos: Position,
    pub path: Token,
    pub typ: Token,
}

/// Encodes a list expression in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct ListDef {
    pub elems: Vec<Expression>,
    pub pos: Position,
}

#[derive(Debug, PartialEq, Clone)]
pub enum FuncOpDef {
    Reduce(ReduceOpDef),
    Map(MapFilterOpDef),
    Filter(MapFilterOpDef),
}

#[derive(Debug, PartialEq, Clone)]
pub struct ReduceOpDef {
    pub func: Box<Expression>,
    pub acc: Box<Expression>,
    pub target: Box<Expression>,
    pub pos: Position,
}

/// MapFilterOpDef implements the list operations in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct MapFilterOpDef {
    pub func: Box<Expression>,
    pub target: Box<Expression>,
    pub pos: Position,
}

impl FuncOpDef {
    pub fn pos(&self) -> &Position {
        match self {
            FuncOpDef::Map(def) => &def.pos,
            FuncOpDef::Filter(def) => &def.pos,
            FuncOpDef::Reduce(def) => &def.pos,
        }
    }
}

#[derive(Debug, PartialEq, Clone)]
pub struct ModuleDef {
    pub scope: Option<Scope>,
    pub pos: Position,
    pub arg_set: FieldList,
    pub out_expr: Option<Box<Expression>>,
    pub arg_tuple: Option<Rc<Val>>,
    pub statements: Vec<Statement>,
}

impl ModuleDef {
    pub fn new<P: Into<Position>>(arg_set: FieldList, stmts: Vec<Statement>, pos: P) -> Self {
        ModuleDef {
            scope: None,
            pos: pos.into(),
            arg_set: arg_set,
            out_expr: None,
            arg_tuple: None,
            statements: stmts,
        }
    }

    pub fn set_out_expr(&mut self, expr: Expression) {
        self.out_expr = Some(Box::new(expr));
    }
}

pub struct Rewriter {
    base: PathBuf,
}

impl Rewriter {
    pub fn new<P: Into<PathBuf>>(base: P) -> Self {
        Self { base: base.into() }
    }
}

fn normalize_path(p: PathBuf) -> PathBuf {
    let mut normalized = PathBuf::new();
    for segment in p.components() {
        normalized.push(segment);
    }
    return normalized;
}

impl walk::Walker for Rewriter {
    fn visit_expression(&mut self, expr: &mut Expression) {
        // Rewrite all paths except for stdlib paths to absolute.
        let main_separator = format!("{}", std::path::MAIN_SEPARATOR);
        if let Expression::Include(ref mut def) = expr {
            let path = PathBuf::from(&def.path.fragment);
            def.path.fragment = normalize_path(self.base.join(path))
                .to_string_lossy()
                .to_string();
        }
        if let Expression::Import(ref mut def) = expr {
            let path = PathBuf::from(
                &def.path
                    .fragment
                    .replace("/", &main_separator)
                    .replace("\\", &main_separator),
            );
            // std/ paths are special and do not get made into absolute paths.
            if path.starts_with(format!("std{}", main_separator)) {
                return;
            }
            def.path.fragment = normalize_path(self.base.join(path))
                .to_string_lossy()
                .to_string();
        }
    }
}

/// RangeDef defines a range with optional step.
#[derive(Debug, PartialEq, Clone)]
pub struct RangeDef {
    pub pos: Position,
    pub start: Box<Expression>,
    pub step: Option<Box<Expression>>,
    pub end: Box<Expression>,
}

/// Encodes an import expression in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct ImportDef {
    pub pos: Position,
    pub path: Token,
}

#[derive(Debug, PartialEq, Clone)]
pub struct IsDef {
    pub pos: Position,
    pub target: Box<Expression>,
    pub typ: Token,
}

#[derive(Debug, PartialEq, Clone)]
pub struct FailDef {
    pub pos: Position,
    pub message: Box<Expression>,
}

#[derive(Debug, PartialEq, Clone)]
pub struct NotDef {
    pub pos: Position,
    pub expr: Box<Expression>,
}

#[derive(Debug, PartialEq, Clone)]
pub struct DebugDef {
    pub pos: Position,
    pub expr: Box<Expression>,
}

/// Encodes a ucg expression. Expressions compute a value from.
#[derive(Debug, PartialEq, Clone)]
pub enum Expression {
    // Base Expression
    Simple(Value),
    Not(NotDef),

    // Binary expressions
    Binary(BinaryOpDef),

    // Complex Expressions
    Copy(CopyDef),
    Range(RangeDef),
    Grouped(Box<Expression>, Position),
    Format(FormatDef),
    Include(IncludeDef),
    Import(ImportDef),
    Call(CallDef),
    Cast(CastDef),
    Func(FuncDef),
    Select(SelectDef),
    FuncOp(FuncOpDef),
    Module(ModuleDef),

    // Declarative failure expressions
    Fail(FailDef),
    // Debugging assistance
    Debug(DebugDef),
}

impl Expression {
    /// Returns the position of the Expression.
    pub fn pos(&self) -> &Position {
        match self {
            &Expression::Simple(ref v) => v.pos(),
            &Expression::Binary(ref def) => &def.pos,
            &Expression::Copy(ref def) => &def.pos,
            &Expression::Range(ref def) => &def.pos,
            &Expression::Grouped(_, ref pos) => pos,
            &Expression::Format(ref def) => &def.pos,
            &Expression::Call(ref def) => &def.pos,
            &Expression::Cast(ref def) => &def.pos,
            &Expression::Func(ref def) => &def.pos,
            &Expression::Module(ref def) => &def.pos,
            &Expression::Select(ref def) => &def.pos,
            &Expression::FuncOp(ref def) => def.pos(),
            &Expression::Include(ref def) => &def.pos,
            &Expression::Import(ref def) => &def.pos,
            &Expression::Fail(ref def) => &def.pos,
            &Expression::Not(ref def) => &def.pos,
            &Expression::Debug(ref def) => &def.pos,
        }
    }

    fn derive_shape(&self) -> Result<Shape, BuildError> {
        // FIXME(jwall): Implement this
        let shape = match self {
            Expression::Simple(ref v) => v.try_into()?,
            Expression::Format(def) => {
                Shape::Str(PositionedItem::new("".to_owned(), def.pos.clone()))
            }
            Expression::Not(def) => Shape::Boolean(PositionedItem::new(true, def.pos.clone())),
            Expression::Grouped(v, _pos) => v.as_ref().try_into()?,
            _ => Shape::Empty(Position::new(0, 0, 0)),
        };
        Ok(shape)
    }
}

impl TryFrom<&Expression> for Shape {
    type Error = crate::error::BuildError;

    fn try_from(e: &Expression) -> Result<Self, Self::Error> {
        e.derive_shape()
    }
}

impl fmt::Display for Expression {
    fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result {
        match self {
            &Expression::Simple(ref v) => {
                write!(w, "{}", v.to_string())?;
            }
            &Expression::Binary(_) => {
                write!(w, "<Expr>")?;
            }
            &Expression::FuncOp(_) => {
                write!(w, "<Expr>")?;
            }
            &Expression::Copy(_) => {
                write!(w, "<Copy>")?;
            }
            &Expression::Range(_) => {
                write!(w, "<Range>")?;
            }
            &Expression::Grouped(_, _) => {
                write!(w, "(<Expr>)")?;
            }
            &Expression::Format(_) => {
                write!(w, "<Format Expr>")?;
            }
            &Expression::Call(_) => {
                write!(w, "<FuncCall>")?;
            }
            &Expression::Cast(_) => {
                write!(w, "<Cast>")?;
            }
            &Expression::Func(_) => {
                write!(w, "<Func>")?;
            }
            &Expression::Module(_) => {
                write!(w, "<Module>")?;
            }
            &Expression::Select(_) => {
                write!(w, "<Select>")?;
            }
            &Expression::Include(_) => {
                write!(w, "<Include>")?;
            }
            &Expression::Import(_) => {
                write!(w, "<Include>")?;
            }
            &Expression::Fail(_) => {
                write!(w, "<Fail>")?;
            }
            &Expression::Not(ref def) => {
                write!(w, "!{}", def.expr)?;
            }
            &Expression::Debug(ref def) => {
                write!(w, "!{}", def.expr)?;
            }
        }
        Ok(())
    }
}

/// Encodes a let statement in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub struct LetDef {
    pub pos: Position,
    pub name: Token,
    pub value: Expression,
}

/// Encodes a parsed statement in the UCG AST.
#[derive(Debug, PartialEq, Clone)]
pub enum Statement {
    // simple expression
    Expression(Expression),

    // Named bindings
    Let(LetDef),

    // Assert statement
    Assert(Position, Expression),

    // Identify an Expression for output.
    Output(Position, Token, Expression),

    // Print the expression to stdout.
    Print(Position, Token, Expression),
}

impl Statement {
    fn pos(&self) -> &Position {
        match self {
            Statement::Expression(ref e) => e.pos(),
            Statement::Let(ref def) => &def.pos,
            Statement::Assert(ref pos, _) => pos,
            Statement::Output(ref pos, _, _) => pos,
            Statement::Print(ref pos, _, _) => pos,
        }
    }
}

#[cfg(test)]
mod test;