1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within,
//! all at once, once the arena itself is destroyed.
//! They do not support deallocation of individual objects while the arena itself is still alive.
//! The benefit of an arena is very fast allocation; just a vector push.
//!
//! This is an equivalent of
//! [`arena::TypedArena`](http://doc.rust-lang.org/arena/struct.TypedArena.html)
//! distributed with rustc, but is available of Rust beta/stable.
//!
//! It is slightly less efficient, but simpler internally and uses much less unsafe code.
//! It is based on a `Vec<Vec<T>>` instead of raw pointers and manual drops.

// Potential optimizations:
// 1) add and stabilize a method for in-place reallocation of vecs.
// 2) add and stabilize placement new.
// 3) use an iterator. This may add far too much unsafe code.

use std::cell::RefCell;
use std::cmp;
use std::mem;

// Initial size in bytes.
const INITIAL_SIZE: usize = 1024;
// Minimum capacity. Must be larger than 0.
const MIN_CAPACITY: usize = 1;

pub struct Arena<T> {
    chunks: RefCell<ChunkList<T>>,
}

struct ChunkList<T> {
    current: Vec<T>,
    rest: Vec<Vec<T>>,
}

impl<T> Arena<T> {
    pub fn new() -> Arena<T> {
        let size = cmp::max(1, mem::size_of::<T>());
        Arena::with_capacity(INITIAL_SIZE / size)
    }

    pub fn with_capacity(n: usize) -> Arena<T> {
        let n = cmp::max(MIN_CAPACITY, n);
        Arena {
            chunks: RefCell::new(ChunkList {
                current: Vec::with_capacity(n),
                rest: vec![]
            }),
        }
    }

    pub fn alloc(&self, value: T) -> &mut T {
        let mut chunks = self.chunks.borrow_mut();

        // At this point, the current chunk must have free capacity.
        let next_item_index = chunks.current.len();
        chunks.current.push(value);
        let new_item_ref = {
            let new_item_ref = &mut chunks.current[next_item_index];

            // Extend the lifetime from that of `chunks_borrow` to that of `self`.
            // This is OK because we’re careful to never move items
            // by never pushing to inner `Vec`s beyond their initial capacity.
            // The returned reference is unique (`&mut`):
            // the `Arena` never gives away references to existing items.
            unsafe { mem::transmute::<&mut T, &mut T>(new_item_ref) }
        };

        if chunks.current.len() == chunks.current.capacity() {
            chunks.grow();
        }

        new_item_ref
    }

    pub fn into_vec(self) -> Vec<T> {
        let chunks = self.chunks.into_inner();
        let mut result = chunks.current;
        for mut vec in chunks.rest {
            result.append(&mut vec);
        }
        result
    }
}

impl<T> ChunkList<T> {
    #[inline(never)]
    #[cold]
    fn grow(&mut self) {
        // Replace the current chunk with a newly allocated chunk.
        let new_capacity = self.current.capacity().checked_mul(2).unwrap();
        let chunk = mem::replace(&mut self.current, Vec::with_capacity(new_capacity));
        self.rest.push(chunk);
    }
}


#[test]
fn it_works() {
    use std::cell::Cell;

    struct DropTracker<'a>(&'a Cell<u32>);
    impl<'a> Drop for DropTracker<'a> {
        fn drop(&mut self) {
            self.0.set(self.0.get() + 1);
        }
    }

    struct Node<'a, 'b: 'a>(Option<&'a Node<'a, 'b>>, u32, DropTracker<'b>);
    let drop_counter = Cell::new(0);
    {
        let arena = Arena::with_capacity(2);

        let mut node: &Node = arena.alloc(Node(None, 1, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 0);

        node = arena.alloc(Node(Some(node), 2, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 1);

        node = arena.alloc(Node(Some(node), 3, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 1);

        node = arena.alloc(Node(Some(node), 4, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 1);

        assert_eq!(node.1, 4);
        assert_eq!(node.0.unwrap().1, 3);
        assert_eq!(node.0.unwrap().0.unwrap().1, 2);
        assert_eq!(node.0.unwrap().0.unwrap().0.unwrap().1, 1);
        assert   !(node.0.unwrap().0.unwrap().0.unwrap().0.is_none());

        mem::drop(node);
        assert_eq!(drop_counter.get(), 0);

        let mut node: &Node = arena.alloc(Node(None, 5, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 1);

        node = arena.alloc(Node(Some(node), 6, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 2);

        node = arena.alloc(Node(Some(node), 7, DropTracker(&drop_counter)));
        assert_eq!(arena.chunks.borrow().rest.len(), 2);

        assert_eq!(drop_counter.get(), 0);

        assert_eq!(node.1, 7);
        assert_eq!(node.0.unwrap().1, 6);
        assert_eq!(node.0.unwrap().0.unwrap().1, 5);
        assert   !(node.0.unwrap().0.unwrap().0.is_none());

        assert_eq!(drop_counter.get(), 0);

    }
    assert_eq!(drop_counter.get(), 7);

    let arena = Arena::with_capacity(1);  // force multiple inner vecs
    for &s in &["t", "e", "s", "t"] {
        arena.alloc(String::from(s));
    }
    let vec = arena.into_vec();
    assert_eq!(vec.len(), 4);
    assert_eq!(vec.iter().filter(|el| *el == "t").count(), 2);
    assert_eq!(vec.iter().filter(|el| *el == "e").count(), 1);
    assert_eq!(vec.iter().filter(|el| *el == "s").count(), 1);
}