1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
use crate::{Quote,HNil,HCons};

pub fn calc<Expr,Quotes>(q:Quotes)->Expr::Result
where Expr:Calc<Quotes> {
    <Expr as Calc<Quotes>>::calc(q)
}

/// An s-expression that is well-formed lisp code
pub trait Eval {
    type Result;
}

/// An s-expression that can calculate a runtime value, given the provided
/// `Quotes`.
///
/// `Quotes` should have the same structure as `Self`, but items
pub trait Calc<Quotes> {
    type Result;
    fn calc(q:Quotes)->Self::Result;
}

impl<T> Eval for Quote<T> {
    type Result = T;
}

impl<T:Eval> Eval for std::marker::PhantomData<T> {
    type Result = T::Result;
}

impl<T,U> Calc<U> for std::marker::PhantomData<T> {
    type Result = Self;
    #[inline(always)]
    fn calc(_:U)->Self { std::marker::PhantomData }
}

impl<Src: Into<Dest>, Dest> Calc<Src> for Quote<Dest> {
    type Result = Dest;
    #[inline(always)]
    fn calc(t:Src)->Dest { t.into() }
}

/// A list where every item is individually evaluable
pub trait EvalList {
    type Result;
}
macro_rules! eval_list { ($exprs:ty) => { <$exprs as EvalList>::Result }}

pub trait CalcList<Quotes> {
    type Result;
    fn calc_list(q:Quotes)->Self::Result;
}

impl EvalList for HNil {
    type Result = HNil;
}

impl CalcList<HNil> for HNil {
    type Result = HNil;
    #[inline(always)]
    fn calc_list(_:HNil)->HNil { HNil }
}

impl<H:Eval, T:EvalList> EvalList for HCons<H,T> {
    type Result = HCons<H::Result, eval_list!{T}>;
}

impl<QH, QT, H, T> CalcList<HCons<QH,QT>> for HCons<H,T>
where H: Calc<QH>,
      T: CalcList< QT > {
    type Result = HCons<H::Result, T::Result>;
    #[inline(always)]
    fn calc_list(q: HCons<QH,QT>) -> HCons<H::Result, T::Result> {
        HCons { head: H::calc(q.head),
                tail: T::calc_list(q.tail)
        }
    }
}

impl<H:Eval, T> Eval for HCons<H,T>
where H::Result: Call,
     <H::Result as Call>::Conv: CallImpl<H::Result, T> {
    type Result = <<H::Result as Call>::Conv as CallImpl<H::Result, T>>::Result;
}

impl<H:Calc<QH>, T, QH, QT> Calc<HCons<QH,QT>> for HCons<H,T>
where H::Result: Call,
     <H::Result as Call>::Conv: CalcImpl<H::Result, T, QT>,
{
    type Result = <<H::Result as Call>::Conv as CalcImpl<H::Result, T, QT>>::Result;
    #[inline(always)]
    fn calc(q:HCons<QH, QT>)->Self::Result {
        let func = H::calc(q.head);
        <H::Result as Call>::Conv::calc_impl(func, q.tail)
    }
}

/// Calling Conventions
pub mod cc {
    /// Use FunCall trait
    pub struct Func;
    
    /// Use SynCall trait
    pub struct Syntax;
}

/// A callable lisp value.
///
/// When the evaluator process a list, the head of that list should evaluate
/// to something that implements `Call`.
/// The `Conv` associated type describes the calling convention that should be
/// used for this callsite, and it controls the rest of processing, including
/// whether or not the rest of the arguments are evaluated at all.
pub trait Call {
    /// Which calling convention is expected?
    ///
    /// Should be one of the types in the `cc` module.
    type Conv;
}

/// A function whose arguments are pre-evaluated
///
/// Note that it is acceptable to arbitrarily constrain this impl, and
/// also to provide multiple impls for the same type, as long as they do
/// not overlap.
///
/// `Args` is an `hlist` of all the arguments passed to the function.
pub trait FunCall< Args >: Call<Conv=cc::Func> {
    type Result;
}

pub trait FunCalc< Args >: Sized {
    type Result;
    fn calc(self, args:Args)->Self::Result;
}

/// A function that takes raw syntax as an argument
///
/// NB: Unlike traditional Lisp macros, this returns a *Value*, not more syntax
pub trait SynCall< Args >: Call<Conv=cc::Syntax> {
    type Result;
}

/// A hack to work around a long-standing bug in the type system, where
/// associated types aren't considered appropriately distinct
pub trait CallImpl<F, Args> {
    type Result;
}

pub trait CalcImpl<F, Args, Q> {
    type Result;
    fn calc_impl(func:F, q:Q)->Self::Result;
}

impl<F, Args:EvalList> CallImpl<F, Args> for cc::Func
where F:FunCall< eval_list!{Args} > {
    type Result = <F as FunCall< eval_list!{Args}>>::Result;
}

impl<F, Args:CalcList<Q>, Q> CalcImpl<F, Args, Q> for cc::Func
where F: FunCalc< Args::Result > {
    type Result = <F as FunCalc< Args::Result >>::Result;
    #[inline(always)]
    fn calc_impl(func:F, q:Q)->Self::Result {
        let args = Args::calc_list(q);
        func.calc(args)
    }
}

impl<F, Args> CallImpl<F, Args> for cc::Syntax
where F:SynCall< Args > {
    type Result = <F as SynCall< Args>>::Result;
}

impl<F, Args, Q> CalcImpl<F, Args, Q> for cc::Syntax
where F:SynCalc< Args, Q > {
    type Result = <F as SynCalc<Args, Q>>::Result;
    #[inline(always)]
    fn calc_impl(func:F, quotes:Q)->Self::Result {
        func.syn_calc(quotes)
    }
}

pub trait SynCalc< Args, Q > {
    type Result;
    fn syn_calc(self, quotes:Q) -> Self::Result;
}