1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#![allow(unused_parens)]
#![cfg_attr(feature="impl_simd", feature(portable_simd))]
/*!

# Feature flags
 - `impl_num` add support for traits from the num crate. (default on)
 - `impl_simd` add support for simd types. (default off)
 - `impl_serde` impl Serialize and Deserialize from serde

# Examples

```
extern crate tuple;
use tuple::*;
# fn main() {}
```
All following operations are defined on the `T1` .. `Tn` type of this crate,
as well for the normal tuple types.

## Element-wise operations

```
# extern crate tuple;
# use tuple::*;
# fn main() {
let a = T2(3, 4) + T2(5, 4);
assert_eq!(a, T2(8, 8));

let b = T2(3u32, 4.0f32) * T2(7, 3.0);
assert_eq!(b, T2(21, 12.));

assert_eq!(T3(1, 2, 3).map(|x| x * 2), T3(2, 4, 6));
# }
```

## Indexing

This is implemented in the [`TupleElements`](trait.TupleElements.html) trait.

Indexing works as expected and panics when out of bounds.
There are also `get` and `get_mut` functions that return `Option<&T>` and `Option<&mut T>`.

```
# extern crate tuple;
# use tuple::*;
# fn main() {
assert_eq!(T3(1, 2, 3)[2], 3);

assert_eq!(T2(7, 8).get(1), Some(&8));
assert_eq!(T2(7, 8).get(2), None);
# }
```

## Iterate over the elements of a tuple
```
# extern crate tuple;
# use tuple::*;
# fn main() {
for i in T2(1, 2).elements() {
    println!("{}", i);
}

let mut b = T3(3, 4, 5);
for i in b.elements_mut() {
    *i += 1;
}
assert_eq!(b.elements().sum::<u32>(), 15);
# }
```

### Consume a tuple and iterate over the elements
```
# extern crate tuple;
# use tuple::*;
# fn main() {
for i in T2(String::from("hello"), String::from("world")).into_elements() {
    let s: String = i; // it's really a String
    println!("{}", s);
}
# }
```

## Conversions

```
# extern crate tuple;
# use tuple::*;
# fn main() {
// slice to tuple
assert_eq!(T3::from_slice(&[1u8, 2, 3, 4, 5][..]), Some(T3(1, 2, 3)));

// tuple to and from array
let t = T3(1, 2, 3);
let a: [u8; 3] = t.into();
let t: T3<_, _, _> = a.into();

assert_eq!(T2(Some(1), Some(2)).collect(), Some(T2(1, 2)));
# }

```
## Joining two tuples
```
# extern crate tuple;
# use tuple::*;
# fn main() {
let a = T2(1, 2);
let b = T3(3, 4, 5);
assert_eq!(a.join(b), T5(1, 2, 3, 4, 5));
# }
```

## Splitting a tuple in two parts
```
# extern crate tuple;
# use tuple::*;
# fn main() {
let a = T4(1, 2, 3, 4);
let (b, c): (T1<_>, _) = a.split(); // split needs a type hint for the left side
assert_eq!(b, T1(1));
assert_eq!(c, T3(2, 3, 4));
# }
```

## Rotate and Reverse

```
# extern crate tuple;
# use tuple::*;
# fn main() {
let a = T4((), 2, 3, true);
assert_eq!(a.rot_l(),   T4(2, 3, true, ())); // rotate left
assert_eq!(a.rot_r(),   T4(true, (), 2, 3)); // rotate right
assert_eq!(a.reverse(), T4(true, 3, 2, ())); // reverse
# }
```

## Adding a Trait

```
#[macro_use]
extern crate tuple;
extern crate num_traits;

use tuple::*;
use num_traits::Zero;
use std::ops::{Add, Sub, Mul};
use std::fmt::Debug;

trait Ring: Add + Sub + Mul + Zero + Debug + Sized {}

// The name is up to you
macro_rules! impl_ring {
    // This line is defined by this crate and can't be changed
    ($($Tuple:ident $Arr:ident { $($T:ident . $t:ident . $idx:tt),* } )*) => ($(

        // This is expanded for every Tuple type
        impl<$($T),*> Ring for $Tuple<$($T),*> where Self: Zero, $( $T: Ring ),* {}

    // this has to match again
    )*)
}

// actually implement it!
impl_tuple!(impl_ring);

# fn main() {}
```
**/

#![cfg_attr(not(feature="std"), no_std)]
#![allow(non_camel_case_types, non_snake_case)]

#[cfg(feature="impl_num")]
extern crate num_traits;

#[cfg(feature="impl_num")]
use num_traits as num;

#[cfg(feature="std")]
extern crate core;

#[cfg(feature="impl_serde")]
extern crate serde;

use core::{ptr, mem};

pub struct Elements<T> {
    tuple:  T,
    index:  usize
}
impl<T> Elements<T> {
    #[inline(always)]
    fn new(t: T) -> Elements<T> {
        Elements { tuple: t, index: 0 }
    }
}
pub struct IntoElements<T: TupleElements> {
    tuple:  Option<T>,
    index:  usize
}
impl<T: TupleElements> IntoElements<T> {
    #[inline(always)]
    fn new(t: T) -> IntoElements<T> {
        IntoElements { tuple: Some(t), index: 0 }
    }
}

/// This trait is marked as unsafe, due to the requirement of the get_mut method,
/// which is required work as an injective map of `index -> element`
///
/// A tuple must not have a `Drop` implementation.
pub unsafe trait TupleElements: Sized {
    type Element;
    const N: usize;
    
    /// returns an Iterator over references to the elements of the tuple
    #[inline(always)]
    fn elements(&self) -> Elements<&Self> { Elements::new(self) }
    
    /// returns an Iterator over mutable references to elements of the tuple
    #[inline(always)]
    fn elements_mut(&mut self) -> Elements<&mut Self> { Elements::new(self) }
    
    // return an Iterator over the elements of the tuple
    #[inline(always)]
    fn into_elements(self) -> IntoElements<Self> { IntoElements::new(self) }
    
    /// attempt to access the n-th element
    fn get(&self, n: usize) -> Option<&Self::Element>;
    
    /// attempt to access the n-th element mutablbly.
    /// This function shall not return the same data for two different indices.
    fn get_mut(&mut self, n: usize) -> Option<&mut Self::Element>;
    
    fn from_iter<I>(iter: I) -> Option<Self> where I: Iterator<Item=Self::Element>;
}

pub trait Map<T>: TupleElements {
    type Output: TupleElements<Element=T>;
    /// apply a function to each element and return the result
    fn map<F>(self, f: F) -> Self::Output where F: Fn(Self::Element) -> T;
    /// same as `map`, but accepts a FnMut
    fn map_mut<F>(self, f: F) -> Self::Output where F: FnMut(Self::Element) -> T;
}

/**
splat: copy the argument into all elements

```
# use tuple::*;
# fn main() {
let a = T4::splat(42);
assert_eq!(a,   T4(42, 42, 42, 42));
# }
```
*/
pub trait Splat<T> {
    fn splat(t: T) -> Self;
}

/// Call a `Fn` and unpack the arguments.

/**
```
# use tuple::*;
# fn main() {
    fn foo(a: u32, b: &str) { }
    foo.call((1, "hi"));
    foo.call(T2(1, "hi"));
# }
```
**/
pub trait Call<T> {
    type Output;
    fn call(&self, args: T) -> Self::Output;
}

/// Call a `FnOnce` and unpack the arguments.
pub trait CallOnce<T> {
    type Output;
    fn call_once(self, args: T) -> Self::Output;
}

/// Call a `FnMut` and unpack the arguments.
pub trait CallMut<T> {
    type Output;
    fn call_mut(&mut self, args: T) -> Self::Output;
}

#[derive(Debug, Eq, PartialEq)]
pub enum ConvertError {
    OutOfBounds
}

impl<'a, T> Iterator for Elements<&'a T> where T: TupleElements {
    type Item = &'a T::Element;
    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        let t = self.tuple.get(self.index);
        if let Some(_) = t {
            self.index += 1;
        }
        t
    }
}
impl<'a, T> Iterator for Elements<&'a mut T> where T: TupleElements {
    type Item = &'a mut T::Element;
    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(t) = self.tuple.get_mut(self.index) {
            self.index += 1;
            
            // we only hand out one reference to each item
            // and that lifetime is limited to the Elements struct
            Some(unsafe { &mut *(t as *mut T::Element) })
        } else { 
            None
        }
    }
}
impl<T> Iterator for IntoElements<T> where T: TupleElements {
    type Item = T::Element;
    #[inline(always)]
    fn next(&mut self) -> Option<Self::Item> {
        match self.tuple.as_mut().unwrap().get(self.index) {
            Some(p) => {
                self.index += 1; // mark as taken
                let v = unsafe { ptr::read(p) }; // read it
                Some(v)
            },
            None => None
        }
    }
}
impl<T> Drop for IntoElements<T> where T: TupleElements {
    #[inline(always)]
    fn drop(&mut self) {
        let mut tuple = self.tuple.take().unwrap();
        // only drop remaining elements
        for i in self.index .. T::N {
            unsafe {
                ptr::drop_in_place(tuple.get_mut(i).unwrap());
            }
        }
        mem::forget(tuple);
    }
}

/// Allows to join/concatenate two tuples
pub trait OpJoin<RHS> {
    type Output;
    fn join(self, rhs: RHS) -> Self::Output;
}

pub trait OpSplit<L> {
    type R;
    fn split(self) -> (L, Self::R);
}

pub trait OpRotateLeft {
    type Output;
    /// rotate left. The previously first element is now the first.
    fn rot_l(self) -> Self::Output;
}
pub trait OpRotateRight {
    type Output;
    /// rotate right. The previously last element is now the last.
    fn rot_r(self) -> Self::Output;
}
pub trait OpReverse {
    type Output;
    /// reverse the elements.
    fn reverse(self) -> Self::Output;
}

#[macro_use]
mod utils;
/*  python3:
import string
for i in range(1, 17):
    print("T{i} A{i} {{ {inner} }}".format(i=i, inner=", ".join("{a}.{b}.{n}".format(a=string.ascii_uppercase[j],b=string.ascii_lowercase[j],n=j) for j in range(i))))
*/
#[macro_export]
macro_rules! impl_tuple {
    ($def:ident) => ($def!(
T1 A1 { A.a.0 }
T2 A2 { A.a.0, B.b.1 }
T3 A3 { A.a.0, B.b.1, C.c.2 }
T4 A4 { A.a.0, B.b.1, C.c.2, D.d.3 }
T5 A5 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4 }
T6 A6 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5 }
T7 A7 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6 }
T8 A8 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7 }
T9 A9 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8 }
T10 A10 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9 }
T11 A11 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9, K.k.10 }
T12 A12 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9, K.k.10, L.l.11 }
T13 A13 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9, K.k.10, L.l.11, M.m.12 }
T14 A14 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9, K.k.10, L.l.11, M.m.12, N.n.13 }
T15 A15 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9, K.k.10, L.l.11, M.m.12, N.n.13, O.o.14 }
T16 A16 { A.a.0, B.b.1, C.c.2, D.d.3, E.e.4, F.f.5, G.g.6, H.h.7, I.i.8, J.j.9, K.k.10, L.l.11, M.m.12, N.n.13, O.o.14, P.p.15 }
    );)
}
macro_rules! init {
    ($($Tuple:ident $Arr:ident { $($T:ident . $t:ident . $idx:tt),* } )*) => ($(
        pub struct $Tuple<$($T),*>($(pub $T),*);
        pub type $Arr<T> = $Tuple<$(A!(T, $T)),*>;
    )*)
}
impl_tuple!(init);

mod m_init;
mod m_ops;
mod m_convert;
mod m_array;

#[cfg(feature="impl_num")]
mod m_num;

mod m_tuple;
mod m_iter;
mod m_call;

#[cfg(all(feature="impl_simd", any(target_arch="x86", target_arch="x86_64")))]
#[macro_use]
mod m_simd;

#[cfg(feature="std")]
mod m_std;

//#[cfg(feature="impl_simd")]
//impl_tuple!(m_simd);

#[cfg(feature="impl_serde")]
mod m_serde;

/*
use itertools::tuple_impl::TupleCollect;
#[macro_use]
mod impl_itertools;
trace_macros!(true);
impl_tuple!(impl_itertools);
*/

/** 
```
# extern crate tuple;
# use tuple::*;
# fn main() {
assert_eq!(tuple("hello world".split(' ')), Some(("hello", "world")));
# }
```
**/
pub fn tuple<T, I>(iter: I) -> Option<T> where
    T: TupleElements, I: Iterator<Item=T::Element>
{
    T::from_iter(iter)
}