1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
use crate::*;
use errors::Error;
const PI: Rad<f64> = Rad(std::f64::consts::PI);

/// Creates and returns a vertex by a three dimensional point.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // put a vertex
/// let vertex = builder::vertex(Point3::new(1.0, 2.0, 3.0));
/// # assert_eq!(vertex.get_point(), Point3::new(1.0, 2.0, 3.0));
/// ```
#[inline(always)]
pub fn vertex(pt: Point3) -> Vertex { Vertex::new(pt) }

/// Returns a line from `vertex0` to `vertex1`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // draw a line
/// let vertex0 = builder::vertex(Point3::new(1.0, 2.0, 3.0));
/// let vertex1 = builder::vertex(Point3::new(6.0, 5.0, 4.0));
/// let line = builder::line(&vertex0, &vertex1);
/// # let curve = line.oriented_curve();
/// # let pt0 = Point3::new(1.0, 2.0, 3.0);
/// # let pt1 = Point3::new(6.0, 5.0, 4.0);
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       let t = i as f64 / N as f64;
/// #       assert!(curve.subs(t).near2(&(pt0 + t * (pt1 - pt0))));
/// # }
/// ```
#[inline(always)]
pub fn line(vertex0: &Vertex, vertex1: &Vertex) -> Edge {
    let pt0 = vertex0.get_point();
    let pt1 = vertex1.get_point();
    Edge::new(vertex0, vertex1, Curve::Line(Line(pt0, pt1)))
}

/// Returns a circle arc from `vertex0` to `vertex1` via `transit`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // draw the unit upper semicircle
/// let vertex0 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let vertex1 = builder::vertex(Point3::new(-1.0, 0.0, 0.0));
/// let semi_circle = builder::circle_arc(&vertex0, &vertex1, Point3::new(0.0, 1.0, 0.0));
/// # let curve = match semi_circle.oriented_curve() {
/// #       Curve::NURBSCurve(curve) => curve,
/// #       _ => unreachable!(),
/// # };
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       let t = curve.knot_vec()[0] + curve.knot_vec().range_length() * i as f64 / N as f64;
/// #       assert!(curve.subs(t).to_vec().magnitude().near(&1.0));
/// # }
/// ```
#[inline(always)]
pub fn circle_arc(vertex0: &Vertex, vertex1: &Vertex, transit: Point3) -> Edge {
    let pt0 = vertex0.get_point().to_homogeneous();
    let pt1 = vertex1.get_point().to_homogeneous();
    let curve = geom_impls::circle_arc_by_three_points(pt0, pt1, transit);
    Edge::new(vertex0, vertex1, Curve::NURBSCurve(NURBSCurve::new(curve)))
}

/// Returns a Bezier curve from `vertex0` to `vertex1` with inter control points `inter_points`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // draw a Bezier curve
/// let vertex0 = builder::vertex(Point3::origin());
/// let vertex1 = builder::vertex(Point3::new(3.0, 0.0, 0.0));
/// let inter_points = vec![Point3::new(1.0, 1.0, 0.0), Point3::new(2.0, -1.0, 0.0)];
/// let bezier = builder::bezier(&vertex0, &vertex1, inter_points);
/// # let curve = bezier.oriented_curve();
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       let t = i as f64 / N as f64;
/// #       let pt = Point3::new(t * 3.0, 6.0 * t * t * t - 9.0 * t * t + 3.0 * t, 0.0);
/// #       assert!(curve.subs(t).near(&pt));
/// # }
/// ```
#[inline(always)]
pub fn bezier(vertex0: &Vertex, vertex1: &Vertex, mut inter_points: Vec<Point3>) -> Edge {
    let pt0 = vertex0.get_point();
    let pt1 = vertex1.get_point();
    let mut ctrl_pts = vec![pt0];
    ctrl_pts.append(&mut inter_points);
    ctrl_pts.push(pt1);
    let knot_vec = KnotVec::bezier_knot(ctrl_pts.len() - 1);
    let curve = BSplineCurve::new(knot_vec, ctrl_pts);
    Edge::new(vertex0, vertex1, Curve::BSplineCurve(curve))
}

/// Returns a homotopic face from `edge0` to `edge1`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // homotopy between skew lines
/// let v0 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v1 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v2 = builder::vertex(Point3::new(0.0, 1.0, 0.0));
/// let v3 = builder::vertex(Point3::new(0.0, 1.0, 1.0));
/// let line0 = builder::line(&v0, &v1);
/// let line1 = builder::line(&v2, &v3);
/// let homotopy = builder::homotopy(&line0, &line1);
/// # let surface = homotopy.oriented_surface();
/// # const N: usize = 10;
/// # for i in 0..=N {
/// #       for j in 0..=N {
/// #           let s = i as f64 / N as f64;
/// #           let t = j as f64 / N as f64;
/// #           let pt = Point3::new(s * (1.0 - t), t, s * t);
/// #           assert!(surface.subs(s, t).near(&pt));
/// #       }
/// # }
/// ```
#[inline(always)]
pub fn homotopy(edge0: &Edge, edge1: &Edge) -> Face {
    let wire: Wire = vec![
        edge0.clone(),
        line(edge0.back(), edge1.back()),
        edge1.inverse(),
        line(edge1.front(), edge0.front()),
    ]
    .into();
    let curve0 = edge0.oriented_curve().lift_up();
    let curve1 = edge1.oriented_curve().lift_up();
    let surface = BSplineSurface::homotopy(curve0, curve1);
    Face::new(
        vec![wire],
        Surface::NURBSSurface(NURBSSurface::new(surface)),
    )
}

/// Returns a homotopic shell from `wire0` to `wire1`.
/// # Examples
/// ```
/// // connecting two squares.
/// use truck_modeling::*;
///
/// let v00 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v01 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v02 = builder::vertex(Point3::new(2.0, 0.0, 0.0));
/// let v10 = builder::vertex(Point3::new(0.0, 1.0, 0.0));
/// let v11 = builder::vertex(Point3::new(1.0, 1.0, 0.0));
/// let v12 = builder::vertex(Point3::new(2.0, 1.0, 0.0));
/// let wire0: Wire = vec![
///     builder::line(&v00, &v01),
///     builder::line(&v01, &v02),
/// ]
/// .into();
/// let wire1: Wire = vec![
///     builder::line(&v10, &v11),
///     builder::line(&v11, &v12),
/// ]
/// .into();
///
/// let shell = builder::try_wire_homotopy(&wire0, &wire1).unwrap();
/// assert_eq!(shell.len(), 2);
/// let boundary = shell.extract_boundaries();
/// assert_eq!(boundary.len(), 1);
/// assert_eq!(boundary[0].len(), 6);
/// ```
/// ```
/// // a triangular tube
/// use truck_modeling::*;
///
/// let v00 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v01 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v02 = builder::vertex(Point3::new(0.5, 0.5, 0.0));
/// let v10 = builder::vertex(Point3::new(0.0, 0.0, 1.0));
/// let v11 = builder::vertex(Point3::new(1.0, 0.0, 1.0));
/// let v12 = builder::vertex(Point3::new(0.5, 0.5, 1.0));
/// let wire0: Wire = vec![
///     builder::line(&v00, &v01),
///     builder::line(&v01, &v02),
///     builder::line(&v02, &v00),
/// ]
/// .into();
/// let wire1: Wire = vec![
///     builder::line(&v10, &v11),
///     builder::line(&v11, &v12),
///     builder::line(&v12, &v10),
/// ]
/// .into();
///
/// let shell = builder::try_wire_homotopy(&wire0, &wire1).unwrap();
/// assert_eq!(shell.len(), 3);
/// let boundary = shell.extract_boundaries();
/// assert_eq!(boundary.len(), 2);
/// assert_eq!(boundary[0].len(), 3);
/// assert_eq!(boundary[1].len(), 3);
/// ```
/// # Failures
/// If the wires have different numbers of edges, then return `Error::NotSameNumberOfEdges`.
/// ```
/// use truck_modeling::{*, errors::Error};
///
/// let v00 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v01 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v02 = builder::vertex(Point3::new(0.5, 0.5, 0.0));
/// let v10 = builder::vertex(Point3::new(0.0, 0.0, 1.0));
/// let v11 = builder::vertex(Point3::new(1.0, 0.0, 1.0));
/// let v12 = builder::vertex(Point3::new(0.5, 0.5, 1.0));
/// let wire0: Wire = vec![
///     builder::line(&v00, &v01),
///     builder::line(&v01, &v02),
/// ]
/// .into();
/// let wire1: Wire = vec![
///     builder::line(&v10, &v11),
///     builder::line(&v11, &v12),
///     builder::line(&v12, &v10),
/// ]
/// .into();
///
/// assert!(matches!(
///     builder::try_wire_homotopy(&wire0, &wire1),
///     Err(Error::NotSameNumberOfEdges),
/// ));
/// ```
#[inline(always)]
pub fn try_wire_homotopy(wire0: &Wire, wire1: &Wire) -> Result<Shell> {
    if wire0.len() != wire1.len() {
        return Err(Error::NotSameNumberOfEdges);
    }
    let mut vemap = truck_base::entry_map::FxEntryMap::new(
        |(v0, v1): (&Vertex, &Vertex)| (v0.id(), v1.id()),
        |(v0, v1)| line(v0, v1),
    );
    let shell = wire0
        .edge_iter()
        .zip(wire1.edge_iter())
        .map(|(edge0, edge1)| {
            let (v0, v1) = (edge0.front(), edge1.front());
            let edge2 = vemap.entry_or_insert((v0, v1)).inverse();
            let (v0, v1) = (edge0.back(), edge1.back());
            let edge3 = vemap.entry_or_insert((v0, v1)).clone();
            let wire: Wire = vec![edge0.clone(), edge3, edge1.inverse(), edge2].into();
            let curve0 = edge0.oriented_curve().lift_up();
            let curve1 = edge1.oriented_curve().lift_up();
            let surface = BSplineSurface::homotopy(curve0, curve1);
            Face::new(
                vec![wire],
                Surface::NURBSSurface(NURBSSurface::new(surface)),
            )
        })
        .collect();
    Ok(shell)
}

/// Creates a cone by R-sweeping.
/// # Examples
/// ```
/// use truck_modeling::*;
/// use std::f64::consts::PI;
/// let v0 = builder::vertex(Point3::new(0.0, 1.0, 0.0));
/// let v1 = builder::vertex(Point3::new(0.0, 0.0, 1.0));
/// let v2 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let wire: Wire = vec![
///     builder::line(&v0, &v1),
///     builder::line(&v1, &v2),
/// ].into();
/// let cone = builder::cone(&wire, Vector3::unit_y(), Rad(2.0 * PI));
/// let irregular = builder::rsweep(&wire, Point3::origin(), Vector3::unit_y(), Rad(2.0 * PI));
///
/// // the degenerate edge of cone is removed!
/// assert_eq!(cone[0].boundaries()[0].len(), 3);
/// assert_eq!(irregular[0].boundaries()[0].len(), 4);
/// # assert_eq!(cone[1].boundaries()[0].len(), 3);
/// # assert_eq!(irregular[1].boundaries()[0].len(), 4);
/// # assert_eq!(cone[2].boundaries()[0].len(), 3);
/// # assert_eq!(irregular[2].boundaries()[0].len(), 4);
/// # assert_eq!(cone[3].boundaries()[0].len(), 3);
/// # assert_eq!(irregular[3].boundaries()[0].len(), 4);
///
/// // this cone is closed
/// Solid::new(vec![cone]);
/// ```
#[inline(always)]
pub fn cone<R: Into<Rad<f64>>>(wire: &Wire, axis: Vector3, angle: R) -> Shell {
    let angle = angle.into();
    let closed = angle.0.abs() >= 2.0 * PI.0;
    let mut wire = wire.clone();
    if wire.is_empty() {
        return Shell::new();
    }
    let pt0 = wire.front_vertex().unwrap().get_point();
    let pt1 = wire.back_vertex().unwrap().get_point();
    let pt1_on_axis = (pt1 - pt0).cross(axis).so_small();
    if wire.len() == 1 && pt1_on_axis {
        let edge = wire.pop_back().unwrap();
        let v0 = edge.front().clone();
        let v2 = edge.back().clone();
        let mut curve = edge.get_curve();
        let (t0, t1) = curve.parameter_range();
        let t = (t0 + t1) * 0.5;
        let v1 = Vertex::new(curve.subs(t));
        let curve1 = curve.cut(t);
        wire.push_back(Edge::debug_new(&v0, &v1, curve));
        wire.push_back(Edge::debug_new(&v1, &v2, curve1));
    }
    let mut shell = rsweep(&wire, pt0, axis, angle);
    let mut edge = shell[0].boundaries()[0][0].clone();
    for i in 0..shell.len() / wire.len() {
        let idx = i * wire.len();
        let face = shell[idx].clone();
        let surface = face.oriented_surface();
        let old_wire = face.into_boundaries().pop().unwrap();
        let mut new_wire = Wire::new();
        new_wire.push_back(edge.clone());
        new_wire.push_back(old_wire[1].clone());
        let new_edge = if closed && i + 1 == shell.len() / new_wire.len() {
            shell[0].boundaries()[0][0].inverse()
        } else {
            let curve = old_wire[2].oriented_curve();
            Edge::debug_new(old_wire[2].front(), new_wire[0].front(), curve)
        };
        new_wire.push_back(new_edge.clone());
        shell[idx] = Face::debug_new(vec![new_wire], surface);
        edge = new_edge.inverse();
    }
    if pt1_on_axis {
        let mut edge = shell[wire.len() - 1].boundaries()[0][0].clone();
        for i in 0..shell.len() / wire.len() {
            let idx = (i + 1) * wire.len() - 1;
            let face = shell[idx].clone();
            let surface = face.oriented_surface();
            let old_wire = face.into_boundaries().pop().unwrap();
            let mut new_wire = Wire::new();
            new_wire.push_back(edge.clone());
            let new_edge = if closed && i + 1 == shell.len() / wire.len() {
                shell[wire.len() - 1].boundaries()[0][0].inverse()
            } else {
                let curve = old_wire[2].oriented_curve();
                Edge::debug_new(new_wire[0].back(), old_wire[2].back(), curve)
            };
            new_wire.push_back(new_edge.clone());
            new_wire.push_back(old_wire[3].clone());
            shell[idx] = Face::debug_new(vec![new_wire], surface);
            edge = new_edge.inverse();
        }
    }
    shell
}

/// Try attatiching a plane whose boundary is `wire`.
/// # Examples
/// ```
/// use truck_modeling::*;
///
/// // make a disk by attaching a plane into circle
/// let vertex = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let circle = builder::rsweep(&vertex, Point3::origin(), Vector3::unit_y(), Rad(7.0));
/// let disk = builder::try_attach_plane(&vec![circle]).unwrap();
/// # let surface = disk.oriented_surface();
/// # let normal = surface.normal(0.5, 0.5);
/// # assert!(normal.near(&Vector3::unit_y()));
/// ```
/// # Failures
/// If wires are not closed or not in one plane, then return `Error::WireNotInOnePlane`.
/// ```
/// use truck_modeling::{*, errors::Error};
/// let v0 = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let v1 = builder::vertex(Point3::new(1.0, 0.0, 0.0));
/// let v2 = builder::vertex(Point3::new(0.0, 1.0, 0.0));
/// let v3 = builder::vertex(Point3::new(0.0, 0.0, 1.0));
/// let wire: Wire = vec![
///     builder::line(&v0, &v1),
///     builder::line(&v1, &v2),
/// ]
/// .into();
/// let mut wires = vec![wire];
/// // failed to attach plane, because wire is not closed.
/// assert_eq!(
///     builder::try_attach_plane(&wires).unwrap_err(),
///     Error::FromTopology(truck_topology::errors::Error::NotClosedWire),
/// );
///
/// wires[0].push_back(builder::line(&v2, &v3));
/// wires[0].push_back(builder::line(&v3, &v0));
/// // failed to attach plane, because wire is not in the plane.
/// assert_eq!(
///     builder::try_attach_plane(&wires).unwrap_err(),
///     Error::WireNotInOnePlane,
/// );
///
/// wires[0].pop_back();
/// wires[0].pop_back();
/// wires[0].push_back(builder::line(&v2, &v0));
/// // success in attaching plane!
/// assert!(builder::try_attach_plane(&wires).is_ok());
/// ```
#[inline(always)]
pub fn try_attach_plane(wires: &[Wire]) -> Result<Face> {
    let pts = wires
        .iter()
        .map(|wire| {
            wire.edge_iter()
                .flat_map(|edge| {
                    edge.oriented_curve()
                        .lift_up()
                        .control_points()
                        .clone()
                        .into_iter()
                        .map(|pt| pt.to_point())
                })
                .collect()
        })
        .collect::<Vec<_>>();
    let plane = match geom_impls::attach_plane(pts) {
        Some(got) => got,
        None => return Err(Error::WireNotInOnePlane),
    };
    Ok(Face::try_new(wires.to_owned(), plane.into())?)
}

/// Returns another topology whose points, curves, and surfaces are cloned.
#[inline(always)]
pub fn clone<T: Mapped<Point3, Curve, Surface>>(elem: &T) -> T { elem.topological_clone() }

/// Returns a transformed vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn transformed<T: Mapped<Point3, Curve, Surface>>(elem: &T, mat: Matrix4) -> T {
    elem.mapped(
        &move |pt: &Point3| mat.transform_point(*pt),
        &move |curve: &Curve| curve.transformed(mat),
        &move |surface: &Surface| surface.transformed(mat),
    )
}

/// Returns a translated vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn translated<T: Mapped<Point3, Curve, Surface>>(elem: &T, vector: Vector3) -> T {
    transformed(elem, Matrix4::from_translation(vector))
}

/// Returns a rotated vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn rotated<T: Mapped<Point3, Curve, Surface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
    angle: Rad<f64>,
) -> T {
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_axis_angle(axis, angle);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    transformed(elem, mat2 * mat1 * mat0)
}

/// Returns a scaled vertex, edge, wire, face, shell or solid.
#[inline(always)]
pub fn scaled<T: Mapped<Point3, Curve, Surface>>(elem: &T, origin: Point3, scalars: Vector3) -> T {
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_nonuniform_scale(scalars[0], scalars[1], scalars[2]);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    transformed(elem, mat2 * mat1 * mat0)
}

/// Sweeps a vertex, an edge, a wire, a face, or a shell by a vector.
/// # Examples
/// ```
/// use truck_modeling::*;
/// let vertex: Vertex = builder::vertex(Point3::new(0.0, 0.0, 0.0));
/// let line: Edge = builder::tsweep(&vertex, Vector3::unit_x());
/// let square: Face = builder::tsweep(&line, Vector3::unit_y());
/// let cube: Solid = builder::tsweep(&square, Vector3::unit_z());
/// #
/// # let b_shell = &cube.boundaries()[0];
/// # assert_eq!(b_shell.len(), 6); // This solid is a cube!
/// # assert!(cube.is_geometric_consistent());
/// #
/// # let b_loop = &b_shell[0].boundaries()[0];
/// # let mut loop_iter = b_loop.vertex_iter();
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(0.0, 0.0, 0.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(0.0, 1.0, 0.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(1.0, 1.0, 0.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(1.0, 0.0, 0.0));
/// # assert_eq!(loop_iter.next(), None);
/// #
/// # let b_loop = &b_shell[3].boundaries()[0];
/// # let mut loop_iter = b_loop.vertex_iter();
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(1.0, 1.0, 0.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(0.0, 1.0, 0.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(0.0, 1.0, 1.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(1.0, 1.0, 1.0));
/// # assert_eq!(loop_iter.next(), None);
/// #
/// # let b_loop = &b_shell[5].boundaries()[0];
/// # let mut loop_iter = b_loop.vertex_iter();
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(0.0, 0.0, 1.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(1.0, 0.0, 1.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(1.0, 1.0, 1.0));
/// # assert_eq!(loop_iter.next().unwrap().get_point(), Point3::new(0.0, 1.0, 1.0));
/// # assert_eq!(loop_iter.next(), None);
/// ```
pub fn tsweep<T: Sweep<Point3, Curve, Surface>>(elem: &T, vector: Vector3) -> T::Swept {
    let trsl = Matrix4::from_translation(vector);
    elem.sweep(
        &move |pt| trsl.transform_point(*pt),
        &move |curve| curve.transformed(trsl),
        &move |surface| surface.transformed(trsl),
        &move |pt0, pt1| Curve::Line(Line(*pt0, *pt1)),
        &move |curve0, curve1| match (curve0, curve1) {
            (Curve::Line(line), Curve::Line(_)) => {
                Surface::Plane(Plane::new(line.0, line.1, line.0 + vector))
            }
            (Curve::BSplineCurve(curve0), Curve::BSplineCurve(curve1)) => {
                Surface::BSplineSurface(BSplineSurface::homotopy(curve0.clone(), curve1.clone()))
            }
            (Curve::NURBSCurve(curve0), Curve::NURBSCurve(curve1)) => {
                Surface::NURBSSurface(NURBSSurface::new(BSplineSurface::homotopy(
                    curve0.non_rationalized().clone(),
                    curve1.non_rationalized().clone(),
                )))
            }
            (Curve::IntersectionCurve(_), Curve::IntersectionCurve(_)) => unimplemented!(),
            _ => unreachable!(),
        },
    )
}

/// Sweeps a vertex, an edge, a wire, a face, or a shell by the rotation.
/// # Details
/// If the absolute value of `angle` is more than 2π rad, then the result is closed shape.
/// For example, the result of sweeping a disk is a bent cylinder if `angle` is less than 2π rad
/// and a solid torus if `angle` is more than 2π rad.
/// # Remarks
/// `axis` must be normalized. If not, panics occurs in debug mode.
/// # Examples
/// ```
/// // Torus
/// use truck_modeling::*;
/// const PI: Rad<f64> = Rad(std::f64::consts::PI);
///
/// let v: Vertex = builder::vertex(Point3::new(3.0, 0.0, 0.0));
/// let circle: Wire = builder::rsweep(&v, Point3::new(2.0, 0.0, 0.0), Vector3::unit_z(), PI * 2.0);
/// let torus: Shell = builder::rsweep(&circle, Point3::origin(), Vector3::unit_y(), PI * 2.0);
/// let solid: Solid = Solid::new(vec![torus]);
/// #
/// # assert!(solid.is_geometric_consistent());
/// # const N: usize = 100;
/// # let shell = &solid.boundaries()[0];
/// # for face in shell.iter() {
/// #   let surface = face.get_surface();
/// #   for i in 0..=N {
/// #       for j in 0..=N {
/// #           let u = i as f64 / N as f64;
/// #           let v = j as f64 / N as f64;
/// #           let pt = surface.subs(u, v);
/// #
/// #           // this surface is a part of torus.
/// #           let tmp = f64::sqrt(pt[0] * pt[0] + pt[2] * pt[2]) - 2.0;
/// #           let res = tmp * tmp + pt[1] * pt[1];
/// #           assert!(Tolerance::near(&res, &1.0));
/// #       }
/// #    }
/// # }
/// ```
/// ```
/// // Modeling a pipe.
/// use truck_modeling::*;
/// const PI: Rad<f64> = Rad(std::f64::consts::PI);
///
/// // Creates the base circle
/// let v: Vertex = builder::vertex(Point3::new(1.0, 0.0, 4.0));
/// let circle: Wire = builder::rsweep(&v, Point3::new(2.0, 0.0, 4.0), -Vector3::unit_z(), PI * 2.0);
///
/// // the result shell of the pipe.
/// let mut pipe: Shell = Shell::new();
///
/// // Draw the first line pipe
/// let mut first_line_part: Shell = builder::tsweep(&circle, Vector3::new(0.0, 0.0, -4.0));
/// pipe.append(&mut first_line_part);
///
/// // Get the new wire
/// let boundaries: Vec<Wire> = pipe.extract_boundaries();
/// let another_circle: Wire = boundaries.into_iter().find(|wire| wire != &circle).unwrap().inverse();
///
/// // Draw the bent part
/// let mut bend_part: Shell = builder::rsweep(
///     &another_circle,
///     Point3::origin(),
///     Vector3::unit_y(),
///     PI / 2.0,
/// );
/// # let surface = bend_part[0].get_surface();
/// pipe.append(&mut bend_part);
///
/// // Get the new wire
/// let boundaries: Vec<Wire> = pipe.extract_boundaries();
/// let another_circle: Wire = boundaries.into_iter().find(|wire| wire != &circle).unwrap().inverse();
///
/// // Draw the second line pipe
/// let mut second_line_part: Shell = builder::tsweep(&another_circle, Vector3::new(-4.0, 0.0, 0.0));
/// pipe.append(&mut second_line_part);
///
/// assert_eq!(pipe.shell_condition(), ShellCondition::Oriented);
/// # assert!(pipe.is_geometric_consistent());
/// # const N: usize = 100;
/// # for i in 0..=N {
/// #    for j in 0..=N {
/// #        let u = i as f64 / N as f64;
/// #        let v = j as f64 / N as f64;
/// #        let pt = surface.subs(u, v);
/// #
/// #        // the y coordinate is positive.
/// #        //assert!(pt[1] >= 0.0);
/// #
/// #        // this surface is a part of torus.
/// #        let tmp = f64::sqrt(pt[0] * pt[0] + pt[2] * pt[2]) - 2.0;
/// #        let res = tmp * tmp + pt[1] * pt[1];
/// #        assert!(Tolerance::near(&res, &1.0));
/// #    }
/// # }
/// ```
#[inline(always)]
pub fn rsweep<T: ClosedSweep<Point3, Curve, Surface>, R: Into<Rad<f64>>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
    angle: R,
) -> T::Swept {
    debug_assert!(axis.magnitude().near(&1.0));
    let angle = angle.into();
    if angle.0.abs() < 2.0 * PI.0 {
        partial_rsweep(elem, origin, axis, angle)
    } else if angle.0 > 0.0 {
        whole_rsweep(elem, origin, axis)
    } else {
        whole_rsweep(elem, origin, -axis)
    }
}

fn partial_rsweep<T: MultiSweep<Point3, Curve, Surface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
    angle: Rad<f64>,
) -> T::Swept {
    let division = if angle.0.abs() < PI.0 { 1 } else { 2 };
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_axis_angle(axis, angle / division as f64);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    let trsl = mat2 * mat1 * mat0;
    elem.multi_sweep(
        &move |pt| trsl.transform_point(*pt),
        &move |curve| curve.transformed(trsl),
        &move |surface| surface.transformed(trsl),
        &move |pt, _| {
            Curve::NURBSCurve(NURBSCurve::new(geom_impls::circle_arc(
                pt.to_homogeneous(),
                origin,
                axis,
                angle / division as f64,
            )))
        },
        &move |curve, _| {
            Surface::RevolutedCurve(Processor::new(RevolutedCurve::by_revolution(
                curve.clone(),
                origin,
                axis,
            )))
        },
        division,
    )
}

fn whole_rsweep<T: ClosedSweep<Point3, Curve, Surface>>(
    elem: &T,
    origin: Point3,
    axis: Vector3,
) -> T::Swept {
    let mat0 = Matrix4::from_translation(-origin.to_vec());
    let mat1 = Matrix4::from_axis_angle(axis, PI);
    let mat2 = Matrix4::from_translation(origin.to_vec());
    let trsl = mat2 * mat1 * mat0;
    elem.closed_sweep(
        &move |pt| trsl.transform_point(*pt),
        &move |curve| curve.transformed(trsl),
        &move |surface| surface.transformed(trsl),
        &move |pt, _| {
            Curve::NURBSCurve(NURBSCurve::new(geom_impls::circle_arc(
                pt.to_homogeneous(),
                origin,
                axis,
                PI,
            )))
        },
        &move |curve, _| {
            Surface::RevolutedCurve(Processor::new(RevolutedCurve::by_revolution(
                curve.clone(),
                origin,
                axis,
            )))
        },
        2,
    )
}

#[test]
fn partial_torus() {
    let v = vertex(Point3::new(0.5, 0.0, 0.0));
    let w = rsweep(&v, Point3::new(0.75, 0.0, 0.0), Vector3::unit_y(), Rad(7.0));
    let face = try_attach_plane(&[w]).unwrap();
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(2.0));
    assert!(torus.is_geometric_consistent());
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(5.0));
    assert!(torus.is_geometric_consistent());
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(-2.0));
    assert!(torus.is_geometric_consistent());
    let torus = rsweep(&face, Point3::origin(), Vector3::unit_z(), Rad(-5.0));
    assert!(torus.is_geometric_consistent());
}