1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
pub mod bst;
pub mod btree;
pub mod rbtree;

pub trait SedgewickMap<K: Ord, V> {
    fn new() -> Self;
    fn size(&self) -> usize;
    fn get(&self, key: &K) -> Option<&V>;
    fn put(&mut self, key: K, value: V);
    fn height(&self) -> Option<usize>;
    fn is_empty(&self) -> bool {
        self.size().eq(&0_usize)
    }

    /// Checks if key exists in `Tree`
    ///
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use treers::bst::BST;
    /// use treers::SedgewickMap;
    /// use treers::rbtree::RedBlackTree;
    /// use treers::btree::BalancedTree;
    ///
    /// let mut bst: BST<char, u32> = BST::new();
    /// let mut rbtree: RedBlackTree<char, u32> = RedBlackTree::new();
    /// let mut btree: BalancedTree<char, u32> = BalancedTree::new();
    ///
    /// bst.put('a', 2);
    /// rbtree.put('a', 2);
    /// btree.put('a', 2);
    ///
    /// assert_eq!(bst.contains(&'a'), true);
    /// assert_eq!(bst.contains(&'b'), false);
    ///
    /// assert_eq!(rbtree.contains(&'a'), true);
    /// assert_eq!(rbtree.contains(&'b'), false);
    ///
    /// assert_eq!(btree.contains(&'a'), true);
    /// assert_eq!(btree.contains(&'b'), false);
    /// ```
    fn contains(&self, key: &K) -> bool {
        self.get(&key).is_some()
    }
    fn min(&self) -> Option<&K>;
    fn max(&self) -> Option<&K>;
}

/// A immutable recursive traversals over Binary Trees.
///
/// `Pre order`
/// `In order`
/// `Post order`
/// `Level order`
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use treers::bst::BST;
/// use treers::{SedgewickMap, Traversals, TreeTraversal};
///
/// let mut bst: BST<char, i32> = BST::new();
/// bst.put('c', 3);
/// bst.put('d', 4);
/// bst.put('b', 2);
/// bst.put('a', 1);
///
/// // Pre order Traversal by keys
/// for (a, _) in bst.traverse(&Traversals::PreOrder) {
///     print!("{}, ", *a);
/// }
///
/// // In order Traversal by keys
/// for (a, _) in bst.traverse(&Traversals::InOrder) {
///     print!("{}, ", *a);
/// }
///
/// // Post order Traversal by keys
/// for (a, _) in bst.traverse(&Traversals::PostOrder) {
///     print!("{}, ", *a);
/// }
///
/// // Level order Traversal by keys
/// for (a, _) in bst.traverse(&Traversals::LevelOrder) {
///     print!("{}, ", *a);
/// }
/// ```
pub trait TreeTraversal<K: Ord, V>: SedgewickMap<K, V> {
    fn traverse(&self, traverse: &Traversals) -> std::vec::IntoIter<(&K, &V)> {
        let mut vec = Vec::with_capacity(self.size());
        match traverse {
            Traversals::PreOrder => self.pre_order(&mut vec),
            Traversals::InOrder => self.in_order(&mut vec),
            Traversals::PostOrder => self.post_order(&mut vec),
            Traversals::LevelOrder => {
                for level in 0..=self.height().unwrap() {
                    self.level_order(&mut vec, level);
                }
            }
        }
        vec.into_iter()
    }
    fn pre_order<'a>(&'a self, vec: &mut Vec<(&'a K, &'a V)>);
    fn in_order<'a>(&'a self, vec: &mut Vec<(&'a K, &'a V)>);
    fn post_order<'a>(&'a self, vec: &mut Vec<(&'a K, &'a V)>);
    fn level_order<'a>(&'a self, vec: &mut Vec<(&'a K, &'a V)>, level: usize);
}

pub enum Traversals {
    PreOrder,
    InOrder,
    PostOrder,
    LevelOrder,
}

#[cfg(test)]
mod tests {
    use crate::bst::BST;
    use crate::btree::BalancedTree;
    use crate::rbtree::RedBlackTree;
    use crate::SedgewickMap;

    #[test]
    fn its_42() {
        assert_eq!(20 + 22, 42);
    }

    fn is_empty<K: Ord, V>(map: &impl SedgewickMap<K, V>) -> bool {
        map.is_empty()
    }

    #[test]
    fn test_empty() {
        let bst: BST<i32, i32> = BST::new();
        let rbt: RedBlackTree<i32, i32> = RedBlackTree::new();
        let btree: BalancedTree<i32, i32> = BalancedTree::new();

        assert_eq!(is_empty(&bst), true);
        assert_eq!(is_empty(&rbt), true);
        assert_eq!(is_empty(&btree), true);
    }
}