1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//! Transitive iterator and utilities
//!
//! This micro-crate provides [TransIter] and [TransPrioQueue], iterators
//! suitable for navigating DAGs. The iterators may be used for iterating over
//! all nodes of some recursive structure or, more generally, implement a
//! transitive closure. It requires a recursion function which yields an
//! iterator over the next items or nodes.
//!
//! The iterators may be created via associated functions such as the obligatory
//! [TransIter::new]. However, the canonical way to create a [TransIter] or
//! [TransPrioQueue] would be by using the [IntoTransIter] trait, which provides
//! the [trans_iter_with](IntoTransIter::trans_iter_with) and
//! [trans_prio_queue_with](IntoTransIter::trans_prio_queue_with) functions.
//! This library provides a blanket implementation for item types.
//!
//! For types with an obvious or inherent relation to associated items, users
//! may choose to implement the [AutoTransIter] trait. It provides the more
//! convenient [trans_iter](AutoTransIter::trans_iter) function which does not
//! require a recursion function to be supplied for each call.

use std::iter::FromIterator;


/// Transitive iterator
///
/// The iterator yields all elements which are transitively reachable from an
/// initial set of items through a given recursion function, including those
/// initial items. Items discovered through a call to the recursion function
/// will only be yielded after the item passed in that call. I.e. if the
/// recursion function yields the "children" of a node, a node will only be
/// yielded after its "parent".
///
/// By default, the iterator will yield siblings, i.e. the items yielded by a
/// single call to the recursion function, grouped together. This behavior can
/// be changed by calling [depth_first](TransIter::depth_first) or
/// [depth_first_unordered](TransIter::depth_first_unordered).
///
/// Note that the iterator itself will not filter items which are reachable via
/// multiple paths. Generally, this iterator is not suitable for navigating
/// potentially cyclic structures on its own. For such structures, consider
/// implementing the necessary filtering in the recursion function supplied
/// during iterator creation.
///
/// # Example
///
/// ```
/// let names: Vec<_> = transiter::TransIter::new(
///     String::new(),
///     |s| { let s = s.clone(); ["a", "b", "c"].iter().map(move |c| s.clone() + c)}
/// ).take(10).collect();
/// assert_eq!(names, vec!["", "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc"]);
/// ```
#[derive(Clone, Debug)]
pub struct TransIter<F: FnMut(&T) -> I, I: IntoIterator<Item = T>, T> {
    get_next: F,
    queue: std::collections::VecDeque<T>,
    mode: Mode,
}

impl<F: FnMut(&T) -> I, I: IntoIterator<Item = T>, T> TransIter<F, I, T> {
    /// Create a new transitive iterator
    ///
    /// The iterator will yield all elements which are transitively reachable
    /// from the `initial` item through the given `recursion` function,
    /// including the `initial` itself.
    pub fn new(initial: T, recursion: F) -> Self {
        Self {get_next: recursion, queue: std::iter::once(initial).collect(), mode: Default::default()}
    }

    /// Create a new transitive iterator with multiple initial items
    ///
    /// The iterator will yield all elements which are transitively reachable
    /// from the `initial` set of items through the given `recursion` function,
    /// including the items in the initial set.
    pub fn new_multi(initial: impl IntoIterator<Item = T>, recursion: F) -> Self {
        Self {get_next: recursion, queue: FromIterator::from_iter(initial), mode: Default::default()}
    }

    /// Make this iterator iterate breadth first
    ///
    /// The iterator will yield siblings grouped together, in the order they
    /// were yielded by the `Iterator` returned by the recursion function.
    ///
    /// This is the default mode.
    pub fn breadth_first(self) -> Self {
        Self {mode: Mode::BreadthFirst, ..self}
    }

    /// Make this iterator iterate depth first
    ///
    /// After yielding an item, the iterator will yield all the items reachable
    /// from that item before yielding the items next sibling.
    ///
    /// Siblings will be yielded in the order they were yielded by the
    /// `Iterator` returned by the recursion function. Note that preserving the
    /// order inhibits some additional cost. Consider using
    /// `depth_first_unordered` instead.
    pub fn depth_first(self) -> Self {
        Self {mode: Mode::DepthFirst, ..self}
    }

    /// Make this iterator iterate depth first, without preserving sibling order
    ///
    /// After yielding an item, the iterator will yield all the items reachable
    /// from that item before yielding the items next sibling.
    ///
    /// The order of the siblings is not preserved, i.e. it may differ from the
    /// order they were yielded by the `Iterator` returned by the recursion
    /// function.
    pub fn depth_first_unordered(self) -> Self {
        Self {mode: Mode::DepthFirstUnordered, ..self}
    }

    /// Convert this iterator into a [TransPrioQueue]
    ///
    /// The [TransPrioQueue] will yield the same items the [TransIter] would.
    pub fn into_trans_prio_queue(self) -> TransPrioQueue<F, I, T> where T: Ord {
        TransPrioQueue::new_multi(self.queue, self.get_next)
    }
}

impl<F: FnMut(&T) -> I, I: IntoIterator<Item = T>, T> Iterator for TransIter<F, I, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        let res = self.queue.pop_front();
        res.as_ref().map(&mut self.get_next).map(|items| match self.mode {
            Mode::BreadthFirst          => self.queue.extend(items),
            Mode::DepthFirst            => {
                let mut items = Vec::from_iter(items);
                self.queue.reserve(items.len());
                while let Some(i) = items.pop() {
                    self.queue.push_front(i);
                }
            },
            Mode::DepthFirstUnordered   => {
                let items = items.into_iter();
                self.queue.reserve(items.size_hint().0);
                items.for_each(|i| self.queue.push_front(i))
            },
        });

        res
    }
}


#[derive(Copy, Clone, Debug)]
enum Mode {
    BreadthFirst,
    DepthFirst,
    DepthFirstUnordered,
}

impl Default for Mode {
    fn default() -> Self {
        Self::BreadthFirst
    }
}


/// Transitive priority queue
///
/// This iterator yields all elements which are transitively reachable from an
/// initial set of items through a given recursion function, including those
/// initial items. Items discovered through a call to the recursion function
/// will be enqueued and only yielded after the item passed in that call. I.e.
/// if the recursion function yields the "children" of a node, a node will only
/// be yielded after its "parent".
///
/// Of the currently enqueued items, the queue will always yield the greatest
/// one as defined via the item type's implementation of [Ord].
///
/// Note that the iterator itself will not filter items which are reachable via
/// multiple paths. Generally, this iterator is not suitable for navigating
/// potentially cyclic structures on its own. For such structures, consider
/// implementing the necessary filtering in the recursion function supplied
/// during iterator creation.
#[derive(Clone, Debug)]
pub struct TransPrioQueue<F: FnMut(&T) -> I, I: IntoIterator<Item = T>, T: Ord> {
    get_next: F,
    data: std::collections::BinaryHeap<T>,
}

impl<F: FnMut(&T) -> I, I: IntoIterator<Item = T>, T: Ord> TransPrioQueue<F, I, T> {
    /// Create a new transitive priority queue
    ///
    /// The queue will yield all elements which are transitively reachable
    /// from the `initial` item through the given `recursion` function,
    /// including the `initial` itself.
    pub fn new(initial: T, recursion: F) -> Self {
        Self {get_next: recursion, data: std::iter::once(initial).collect()}
    }

    /// Create a new transitive priority queue with multiple initial items
    ///
    /// The queue will yield all elements which are transitively reachable
    /// from the `initial` set of items through the given `recursion` function,
    /// including the items in the initial set.
    pub fn new_multi(initial: impl IntoIterator<Item = T>, recursion: F) -> Self {
        Self {get_next: recursion, data: FromIterator::from_iter(initial)}
    }
}

impl<F: FnMut(&T) -> I, I: IntoIterator<Item = T>, T: Ord> Iterator for TransPrioQueue<F, I, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        let res = self.data.pop();
        res.as_ref().map(&mut self.get_next).map(|items| self.data.extend(items));
        res
    }
}


/// Create a [TransIter] directly from some value
///
/// This trait defines the [trans_iter_with](IntoTransIter::trans_iter_with)
/// function which, when called on a value, returns a [TransIter] with an
/// initial set derived from that value.
///
/// # Example
///
/// ```
/// use transiter::IntoTransIter;
///
/// let names: Vec<_> = String::new()
///     .trans_iter_with(|s| { let s = s.clone(); ["a", "b", "c"].iter().map(move |c| s.clone() + c)})
///     .take(10)
///     .collect();
/// assert_eq!(names, vec!["", "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc"]);
/// ```
pub trait IntoTransIter<T> {
    /// Create a [TransIter] from this value
    ///
    /// Create a [TransIter] with an initial set derived from this value and
    /// the given recursion function.
    fn trans_iter_with<F: FnMut(&T) -> I, I: IntoIterator<Item = T>>(
        self,
        recursion: F
    ) -> TransIter<F, I, T>;

    /// Create a [TransPrioQueue] from this value
    ///
    /// Create a [TransPrioQueue] with an initial set derived from this value
    /// and the given recursion function.
    fn trans_prio_queue_with<F: FnMut(&T) -> I, I: IntoIterator<Item = T>>(
        self,
        recursion: F
    ) -> TransPrioQueue<F, I, T>
    where Self: Sized,
          T: Ord,
    {
        self.trans_iter_with(recursion).into_trans_prio_queue()
    }
}

impl<T> IntoTransIter<T> for T {
    fn trans_iter_with<F: FnMut(&T) -> I, I: IntoIterator<Item = T>>(
        self,
        recursion: F
    ) -> TransIter<F, I, T> {
        TransIter::new(self, recursion)
    }
}


/// Create a [TransIter] directly from some value, with type-specific recursion
///
/// This trait defines the [trans_iter](AutoTransIter::trans_iter) function
/// which, when called on a value, returns a [TransIter] with an initial set
/// derived from that value.
///
/// Users may implement this trait for types with inherent and/or obvious
/// relations to other items of the same type such as recursive/tree-like
/// structures. In order to avoid deep copying, consider implementing this trait
/// for references of your types rather than for structs and enums directly.
pub trait AutoTransIter<T>: IntoTransIter<T> + Sized {
    /// Type of the iterator returned by `recurse`
    type RecIter: IntoIterator<Item = T>;

    /// Retrieve the "next" items reachable from a given item
    fn recurse(item: &T) -> Self::RecIter;

    /// Create a [TransIter] from this value
    ///
    /// Create a [TransIter] with an initial set derived from this value and the
    /// type specific recursion function.
    fn trans_iter(self) -> TransIter<fn(&T) -> Self::RecIter, Self::RecIter, T> {
        self.trans_iter_with(Self::recurse)
    }

    /// Create a [TransPrioQueue] from this value
    ///
    /// Create a [TransPrioQueue] with an initial set derived from this value
    /// and the type specific recursion function.
    fn trans_prio_queue(self) -> TransPrioQueue<fn(&T) -> Self::RecIter, Self::RecIter, T> where T: Ord {
        self.trans_prio_queue_with(Self::recurse)
    }
}


#[cfg(test)]
#[macro_use(quickcheck)]
extern crate quickcheck_macros;

#[cfg(test)]
mod tests;