1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Copyright (C) 2017 Kisio Digital and/or its affiliates.
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU Affero General Public License as published by the
// Free Software Foundation, version 3.

// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
// details.

// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>

//! Modeling the relations between objects.
//!
//! This module defines types for modeling the relations between
//! objects, and use them thanks to the `GetCorresponding` custom
//! derive.
//!
//! Let's clarify that with an example. Suppose that `Bike`s have a
//! `Brand`. `Bike`s also have an `Owner`, and these `Owner`s have a
//! `Job`. `Bike`s also have a `Kind`.
//!
//! ```raw
//! Brand - Bike - Owner - Job
//!          |
//!         Kind
//! ```
//!
//! Let's defines these relations and use them a bit:
//!
//! ```no_run
//! # use transit_model_procmacro::*;
//! # use transit_model_relations::*;
//! # use typed_index_collection::Idx;
//! # struct Bike;
//! # struct Brand;
//! # struct Owner;
//! # struct Job;
//! # struct Kind;
//! # fn get_mbk_brand() -> Idx<Brand> { unimplemented!() }
//! #[derive(Default, GetCorresponding)]
//! pub struct World {
//!     brands_to_bikes: OneToMany<Brand, Bike>,
//!     owners_to_bikes: OneToMany<Owner, Bike>,
//!     jobs_to_owners: OneToMany<Job, Owner>,
//!     kinds_to_bikes: OneToMany<Kind, Bike>,
//! }
//! let world = World::default();
//! let mbk: Idx<Brand> = get_mbk_brand();
//! let owners_with_mbk: IdxSet<Owner> = world.get_corresponding_from_idx(mbk);
//! let jobs_with_mbk: IdxSet<Job> = world.get_corresponding(&owners_with_mbk);
//! println!(
//!    "{} owners with {} different jobs own a bike of the brand MBK.",
//!    owners_with_mbk.len(),
//!    jobs_with_mbk.len()
//! );
//! ```
//!
//! First, we want to model the relations between the object. One bike
//! has a brand, and a brand has several bikes (hopefully). Thus, we
//! use a `OneToMany<Bike, Brand>` to model this relation.
//!
//! We repeat this process to model every relation. We obtain without
//! too much effort the `World` struct.
//!
//! The `GetCorresponding` derive looks at each field of the `World`
//! struct, keeping the fields containing `_to_` with a type with 2
//! generics, and interpret that as a relation. For example,
//! `bikes_to_brands: OneToMany<Bike, Brand>` is a relation between
//! `Bike` and `Brand`. Using all the relations, it generates a graph,
//! compute the shortest path between all the types, and generate an
//! `impl GetCorresponding` for each feasible path.
//!
//! These `impl GetCorresponding` are used by
//! `World::get_corresponding_from_idx` and `World::get_corresponding`
//! that are helpers to explore the `World`.
//!
//! Thus, when we call `world.get_corresponding_from_idx(mbk)` for
//! `Owner`, we will use the generated code that, basically, gets all
//! the `Bike`s corresponding to the `Brand` MBK, and then gets all
//! the `Owner`s corresponding to these `Bike`s.
//!
//! Imagine that, in our application, we use a lot the `Owner->Kind`
//! and `Brand->Kind` search.  To do these searches, we pass by
//! `Bike`, and there is a lot of `Bike`s in our model.  Thus, as an
//! optimization, we want to precompute these relations.
//!
//! ```raw
//! Brand - Bike - Owner - Job
//!    \     |      /
//!     `-- Kind --'
//! ```
//!
//! The shortcuts `Brand - Kind` and `Kind - Owner` allow our
//! optimization, but we now have a problem for the `Owner->Brand`
//! search: we can do `Owner->Kind->Brand` and `Owner->Bike->Brand`
//! with a cost of 2.  The first solution is clearly wrong, introduced
//! by our shortcuts.  To fix this problem, we can put a weight of 1.9
//! on `Brand - Kind` and `Kind - Owner`.  The path
//! `Owner->Kind->Brand` now cost 3.8 and is discarded.
//!
//! Let's implement that:
//!
//! ```
//! # use transit_model_procmacro::*;
//! # use transit_model_relations::*;
//! # use typed_index_collection::Idx;
//! # struct Bike;
//! # struct Brand;
//! # struct Owner;
//! # struct Job;
//! # struct Kind;
//! # fn get_mbk_brand() -> Idx<Brand> { unimplemented!() }
//! #[derive(GetCorresponding)]
//! pub struct World {
//!     brands_to_bikes: OneToMany<Brand, Bike>,
//!     owners_to_bikes: OneToMany<Owner, Bike>,
//!     jobs_to_owners: OneToMany<Job, Owner>,
//!     kinds_to_bikes: OneToMany<Kind, Bike>,
//!
//!     // shortcuts
//!     #[get_corresponding(weight = "1.9")]
//!     brands_to_kinds: ManyToMany<Brand, Kind>,
//!     #[get_corresponding(weight = "1.9")]
//!     kinds_to_owners: ManyToMany<Kind, Owner>,
//! }
//! # fn create_brands_to_bikes() -> OneToMany<Brand, Bike> { unimplemented!() }
//! # fn create_owners_to_bikes() -> OneToMany<Owner, Bike> { unimplemented!() }
//! # fn create_jobs_to_owners() -> OneToMany<Job, Owner> { unimplemented!() }
//! # fn create_kinds_to_bikes() -> OneToMany<Kind, Bike> { unimplemented!() }
//! impl World {
//!     fn new() -> World {
//!         let brands_to_bikes = create_brands_to_bikes();
//!         let owners_to_bikes = create_owners_to_bikes();
//!         let jobs_to_owners = create_jobs_to_owners();
//!         let kinds_to_bikes = create_kinds_to_bikes();
//!         World {
//!             brands_to_kinds: ManyToMany::from_relations_sink(
//!                 &brands_to_bikes,
//!                 &kinds_to_bikes,
//!             ),
//!             kinds_to_owners: ManyToMany::from_relations_sink(
//!                 &kinds_to_bikes,
//!                 &owners_to_bikes,
//!             ),
//!             brands_to_bikes,
//!             owners_to_bikes,
//!             jobs_to_owners,
//!             kinds_to_bikes,
//!         }
//!     }
//! }
//! ```

/// The error type used by the crate.
pub type Error = failure::Error;

/// The corresponding result type used by the crate.
pub type Result<T> = std::result::Result<T, Error>;

use typed_index_collection::{CollectionWithId, Id, Idx};

use derivative::Derivative;
use failure::{format_err, ResultExt};
use std::collections::{BTreeMap, BTreeSet};

/// A set of `Idx<T>`
pub type IdxSet<T> = BTreeSet<Idx<T>>;

/// An object linking 2 types together.
pub trait Relation {
    /// The type of the source object
    type From;

    /// The type of the targer object
    type To;

    /// Returns the complete set of the source objects.
    fn get_from(&self) -> IdxSet<Self::From>;

    /// Returns the complete set of the target objects.
    fn get_to(&self) -> IdxSet<Self::To>;

    /// For a given set of the source objects, returns the
    /// corresponding targets objects.
    fn get_corresponding_forward(&self, from: &IdxSet<Self::From>) -> IdxSet<Self::To>;

    /// For a given set of the target objects, returns the
    /// corresponding source objects.
    fn get_corresponding_backward(&self, from: &IdxSet<Self::To>) -> IdxSet<Self::From>;
}

/// A one to many relation, i.e. to one `T` corresponds many `U`,
/// and a `U` has one corresponding `T`.
#[derive(Derivative, Debug)]
#[derivative(Default(bound = ""))]
pub struct OneToMany<T, U> {
    one_to_many: BTreeMap<Idx<T>, IdxSet<U>>,
    many_to_one: BTreeMap<Idx<U>, Idx<T>>,
}

impl<T, U> OneToMany<T, U>
where
    T: Id<T>,
    U: Id<U> + Id<T>,
{
    fn new_impl(one: &CollectionWithId<T>, many: &CollectionWithId<U>) -> Result<Self> {
        let mut one_to_many = BTreeMap::default();
        let mut many_to_one = BTreeMap::default();
        for (many_idx, obj) in many {
            let one_id = <U as Id<T>>::id(obj);
            let one_idx = one
                .get_idx(one_id)
                .ok_or_else(|| format_err!("id={:?} not found", one_id))?;
            many_to_one.insert(many_idx, one_idx);
            one_to_many
                .entry(one_idx)
                .or_insert_with(IdxSet::default)
                .insert(many_idx);
        }
        Ok(OneToMany {
            one_to_many,
            many_to_one,
        })
    }
    /// Construct the relation automatically from the 2 given
    /// `CollectionWithId`s.
    pub fn new(
        one: &CollectionWithId<T>,
        many: &CollectionWithId<U>,
        rel_name: &str,
    ) -> Result<Self> {
        Ok(Self::new_impl(one, many).with_context(|_| format!("Error indexing {}", rel_name))?)
    }
}

impl<T, U> Relation for OneToMany<T, U> {
    type From = T;
    type To = U;
    fn get_from(&self) -> IdxSet<T> {
        self.one_to_many.keys().cloned().collect()
    }
    fn get_to(&self) -> IdxSet<U> {
        self.many_to_one.keys().cloned().collect()
    }
    fn get_corresponding_forward(&self, from: &IdxSet<T>) -> IdxSet<U> {
        get_corresponding(&self.one_to_many, from)
    }
    fn get_corresponding_backward(&self, from: &IdxSet<U>) -> IdxSet<T> {
        from.iter()
            .filter_map(|from_idx| self.many_to_one.get(from_idx))
            .cloned()
            .collect()
    }
}

/// A many to many relation, i.e. a `T` can have multiple `U`, and
/// vice versa.
#[derive(Default, Debug)]
pub struct ManyToMany<T, U> {
    forward: BTreeMap<Idx<T>, IdxSet<U>>,
    backward: BTreeMap<Idx<U>, IdxSet<T>>,
}

impl<T, U> ManyToMany<T, U> {
    /// Constructor from the forward relation.
    pub fn from_forward(forward: BTreeMap<Idx<T>, IdxSet<U>>) -> Self {
        let mut backward = BTreeMap::default();
        forward
            .iter()
            .flat_map(|(&from_idx, obj)| obj.iter().map(move |&to_idx| (from_idx, to_idx)))
            .for_each(|(from_idx, to_idx)| {
                backward
                    .entry(to_idx)
                    .or_insert_with(IdxSet::default)
                    .insert(from_idx);
            });
        ManyToMany { forward, backward }
    }

    /// Constructor from 2 chained relations, i.e. from the relations
    /// `A->B` and `B->C`, constructs the relation `A->C`.
    pub fn from_relations_chain<R1, R2>(r1: &R1, r2: &R2) -> Self
    where
        R1: Relation<From = T>,
        R2: Relation<From = R1::To, To = U>,
    {
        let forward = r1
            .get_from()
            .into_iter()
            .map(|idx| {
                let from = Some(idx).into_iter().collect();
                let tmp = r1.get_corresponding_forward(&from);
                (idx, r2.get_corresponding_forward(&tmp))
            })
            .collect();
        Self::from_forward(forward)
    }

    /// Constructor from 2 relations with a common sink, i.e. from the
    /// relations `A->B` and `C->B`, constructs the relation `A->C`.
    pub fn from_relations_sink<R1, R2>(r1: &R1, r2: &R2) -> Self
    where
        R1: Relation<From = T>,
        R2: Relation<From = U, To = R1::To>,
    {
        let forward = r1
            .get_from()
            .into_iter()
            .map(|idx| {
                let from = Some(idx).into_iter().collect();
                let tmp = r1.get_corresponding_forward(&from);
                (idx, r2.get_corresponding_backward(&tmp))
            })
            .collect();
        Self::from_forward(forward)
    }

    /// Constructor from 2 relations with a common source, i.e. from
    /// the relations `B->A` and `B->C`, constructs the relation
    /// `A->C`.
    pub fn from_relations_source<R1, R2>(r1: &R1, r2: &R2) -> Self
    where
        R1: Relation<To = T>,
        R2: Relation<From = R1::From, To = U>,
    {
        let forward = r1
            .get_to()
            .into_iter()
            .map(|idx| {
                let from = Some(idx).into_iter().collect();
                let tmp = r1.get_corresponding_backward(&from);
                (idx, r2.get_corresponding_forward(&tmp))
            })
            .collect();
        Self::from_forward(forward)
    }
}

impl<T, U> Relation for ManyToMany<T, U> {
    type From = T;
    type To = U;
    fn get_from(&self) -> IdxSet<T> {
        self.forward.keys().cloned().collect()
    }
    fn get_to(&self) -> IdxSet<U> {
        self.backward.keys().cloned().collect()
    }
    fn get_corresponding_forward(&self, from: &IdxSet<T>) -> IdxSet<U> {
        get_corresponding(&self.forward, from)
    }
    fn get_corresponding_backward(&self, from: &IdxSet<U>) -> IdxSet<T> {
        get_corresponding(&self.backward, from)
    }
}

fn get_corresponding<T, U>(map: &BTreeMap<Idx<T>, IdxSet<U>>, from: &IdxSet<T>) -> IdxSet<U> {
    from.iter()
        .filter_map(|from_idx| map.get(from_idx))
        .flat_map(|indices| indices.iter().cloned())
        .collect()
}