1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use prost::Message;
use crate::tfpb::tensorflow::{GraphDef, NodeDef, SavedModel};
use std::{fs, path};
use tract_core::internal::*;

#[derive(Default)]
pub struct ParsingContext {
    pub node_output_arities: HashMap<String, usize>
}

#[derive(Clone, Default)]
pub struct TfOpRegister(
    pub HashMap<String, fn(&ParsingContext, node: &NodeDef) -> TractResult<Box<dyn InferenceOp>>>,
);

impl TfOpRegister {
    pub fn insert(
        &mut self,
        s: &'static str,
        builder: fn(&ParsingContext, node: &NodeDef) -> TractResult<Box<dyn InferenceOp>>,
    ) {
        self.0.insert(s.into(), builder);
    }
}

pub struct Tensorflow {
    pub op_register: TfOpRegister,
}

impl Tensorflow {
    // From the node_def.proto documentation:
    // Each input is "node:src_output" with "node" being a string name and
    // "src_output" indicating which output tensor to use from "node". If
    // "src_output" is 0 the ":0" suffix can be omitted. Regular inputs may
    // optionally be followed by control inputs that have the format "^node".
    fn parse_input(i: &str) -> TractResult<(&str, usize)> {
        let pair = if i.starts_with("^") {
            (&i[1..], 0)
        } else {
            let splits: Vec<_> = i.splitn(2, ':').collect();
            (splits[0], if splits.len() > 1 { splits[1].parse::<usize>()? } else { 0 })
        };
        Ok(pair)
    }

    pub fn determinize(model: &mut GraphDef) -> TractResult<()> {
        for pbnode in &mut model.node {
            if pbnode.op == "RandomUniform" {
                if pbnode.get_attr_int::<i64>("seed")? == 0
                    && pbnode.get_attr_int::<i64>("seed2")? == 0
                {
                    pbnode.attr.insert("seed".to_string(), 1.into());
                    pbnode.attr.insert("seed2".to_string(), 1.into());
                }
            }
        }
        Ok(())
    }

    pub fn read_frozen_model(&self, r: &mut dyn std::io::Read) -> TractResult<GraphDef> {
        let mut v = vec!();
        r.read_to_end(&mut v)?;
        let b = bytes::Bytes::from(v);
        Ok(GraphDef::decode(b).map_err(|e| format!("{:?}", e))?)
    }

    pub fn open_saved_model(&self, r: &mut dyn std::io::Read) -> TractResult<SavedModel> {
        let mut v = vec!();
        r.read_to_end(&mut v)?;
        let b = bytes::Bytes::from(v);
        Ok(SavedModel::decode(b).map_err(|e| format!("{:?}", e))?)
    }

    /// Convenience method: will read the first model in the saved model
    /// container. Use open_avec_model for more control.
    pub fn read_saved_model(&self, r: &mut dyn std::io::Read) -> TractResult<GraphDef> {
        let mut saved = self.open_saved_model(r)?;
        Ok(saved.meta_graphs.remove(0).graph_def.unwrap())
    }
}

impl Framework<GraphDef> for Tensorflow {
    /// This method will try to read as frozen model, then as a saved model.
    fn proto_model_for_path(&self, r: impl AsRef<path::Path>) -> TractResult<GraphDef> {
        self.read_frozen_model(&mut fs::File::open(r.as_ref())?)
            .or_else(|_| self.read_saved_model(&mut fs::File::open(r.as_ref())?))
    }

    /// This method expects a frozen model, use open_saved_model for TF2 saved
    /// model format.
    fn proto_model_for_read(&self, r: &mut dyn std::io::Read) -> TractResult<GraphDef> {
        self.read_frozen_model(r)
    }

    fn model_for_proto_model(&self, graph: &GraphDef) -> TractResult<InferenceModel> {
        use crate::ops::control_flow as cf;

        let mut model = InferenceModel::default();
        let mut inputs = tvec!();
        let mut context = ParsingContext::default();

        // compute min output arity for all nodes
        for pbnode in &graph.node {
            for i in &pbnode.input {
                let (node, slot) = Self::parse_input(i)?;
                let arity = context.node_output_arities.entry(node.to_string()).or_insert(1);
                *arity = (*arity).max(slot + 1);
            }
        }

        for pbnode in &graph.node {
            let name = &pbnode.name;

            if pbnode.op == "NextIteration" {
                let source_op = cf::NextIteration::new(name.clone(), cf::NextIterationRole::Source);
                let sink_op = cf::NextIteration::new(name.clone(), cf::NextIterationRole::Sink);
                let _source =
                    model.add_node(name.clone(), source_op, tvec!(InferenceFact::default()))?;
                let _sink = model.add_node(format!("{}-Sink", name), sink_op, tvec!())?;
                continue;
            }

            let op = match self.op_register.0.get(&pbnode.op) {
                Some(builder) => (builder)(&context, pbnode)?,
                None => tract_core::ops::unimpl::UnimplementedOp::new(
                    context.node_output_arities.get(name).cloned().unwrap_or(1),
                    &pbnode.op,
                    format!("{:?}", pbnode),
                )
                .into(),
            };

            let facts = tvec!(InferenceFact::default(); op.nboutputs()?);

            let node_id = model.add_node(name.clone(), op, facts)?;
            if pbnode.op == "Placeholder" {
                let dt = pbnode.get_attr_datum_type("dtype")?;
                let mut fact = InferenceFact::dt(dt);
                if let Some(shape) = pbnode.get_attr_opt_shape("shape")? {
                    let shape_fact = ShapeFact::closed(
                        shape
                            .iter()
                            .map(|d| {
                                if *d == -1 {
                                    GenericFact::Any
                                } else {
                                    GenericFact::Only(d.to_dim())
                                }
                            })
                            .collect(),
                    );
                    fact = fact.with_shape(shape_fact);
                }
                inputs.push(OutletId::new(node_id, 0));
                model.set_outlet_fact(OutletId::new(node_id, 0), fact)?;
            }
        }

        for pbnode in &graph.node {
            let node_id = if pbnode.op == "NextIteration" {
                model.node_by_name(&*format!("{}-Sink", &pbnode.name))?.id
            } else {
                model.node_by_name(&pbnode.name)?.id
            };
            for (ix, i) in pbnode.input.iter().enumerate() {
                let input = Self::parse_input(i)?;
                let prec = model.node_by_name(input.0)?.id;
                if i.starts_with("^") {
                    panic!();
                } else {
                    let outlet = OutletId::new(prec, input.1);
                    let inlet = InletId::new(node_id, ix);
                    model.add_edge(outlet, inlet)?;
                    model.set_outlet_label(outlet, i.to_string());
                }
            }
        }

        // variable -> assign rewire
        //  * Assign consumes this by_ref tensor on #0 and somehow performs
        //      updates on it (it has a second input on #1 for the value to
        //      assign)
        //
        // in tract:
        //  * VariableV2 outputs a regular tensor stored in the session state
        //  * Assign has the same inputs, but do not uses the #0, udating the
        //      state session instead
        for id in 0..model.nodes().len() {
            use crate::ops::vars::*;
            if model.node(id).op_is::<Assign>() {
                let prec = model.node(id).inputs[0];
                let var_id = model.node(prec.node).op_as::<VariableV2>().map(|v| v.id.clone());
                if let (Some(var_id), Some(assign)) =
                    (var_id, model.node_mut(id).op_as_mut::<Assign>())
                {
                    assign.var_id = Some(var_id);
                } else {
                    bail!("Model contains unlinked Assign/Variable2");
                }
            }
        }
        model.set_input_outlets(&*inputs)?;
        model.auto_outputs()?;
        Ok(model)
    }
}