1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
use crate::fail;
use crate::layer::OpenedSpan;
use tracing::Subscriber;
use tracing_subscriber::{registry::LookupSpan, Registry};
use uuid::Uuid;

/// Gets the current [`Uuid`] of an entered span within a `tracing-forest`
/// subscriber.
///
/// # Examples
///
/// Passing in a `Uuid` to a span, and then retreiving it from within the span:
/// ```
/// # use tracing::{info, info_span};
/// # use uuid::Uuid;
/// # tracing_forest::init();
/// let uuid = Uuid::new_v4();
///
/// // Tracing's syntax allows us to omit the redundent naming of the field here
/// info_span!("my_span", %uuid).in_scope(|| {
///     assert!(tracing_forest::id() == uuid);
/// });
/// ```
///
/// # Panics
///
/// This function panics if there is no current subscriber, if the subscriber
/// isn't composed with a [`ForestLayer`], or if the subscriber isn't in a span.
///
/// [`ForestLayer`]: crate::layer::ForestLayer
#[must_use]
pub fn id() -> Uuid {
    tracing::dispatcher::get_default(|dispatch| {
        let subscriber = dispatch
            .downcast_ref::<Registry>()
            .unwrap_or_else(fail::subscriber_not_found);

        let current = subscriber.current_span();

        let id = current.id().expect(fail::NO_CURRENT_SPAN);

        subscriber
            .span(id)
            .expect(fail::SPAN_NOT_IN_CONTEXT)
            .extensions()
            .get::<OpenedSpan>()
            .expect(fail::NO_FOREST_LAYER)
            .uuid()
    })
}

// Credit: https://github.com/uuid-rs/uuid/blob/main/src/parser.rs

pub(crate) const fn try_parse(input: &[u8]) -> Option<Uuid> {
    match (input.len(), input) {
        // Inputs of 32 bytes must be a non-hyphenated UUID
        (32, s) => parse_simple(s),
        // Hyphenated UUIDs may be wrapped in various ways:
        // - `{UUID}` for braced UUIDs
        // - `urn:uuid:UUID` for URNs
        // - `UUID` for a regular hyphenated UUID
        (36, s)
        | (38, [b'{', s @ .., b'}'])
        | (45, [b'u', b'r', b'n', b':', b'u', b'u', b'i', b'd', b':', s @ ..]) => {
            parse_hyphenated(s)
        }
        // Any other shaped input is immediately invalid
        _ => None,
    }
}

#[inline]
const fn parse_simple(s: &[u8]) -> Option<Uuid> {
    // This length check here removes all other bounds
    // checks in this function
    if s.len() != 32 {
        return None;
    }

    let mut buf: [u8; 16] = [0; 16];
    let mut i = 0;

    while i < 16 {
        // Convert a two-char hex value (like `A8`)
        // into a byte (like `10101000`)
        let h1 = HEX_TABLE[s[i * 2] as usize];
        let h2 = HEX_TABLE[s[i * 2 + 1] as usize];

        // We use `0xff` as a sentinel value to indicate
        // an invalid hex character sequence (like the letter `G`)
        if h1 | h2 == 0xff {
            return None;
        }

        // The upper nibble needs to be shifted into position
        // to produce the final byte value
        buf[i] = SHL4_TABLE[h1 as usize] | h2;
        i += 1;
    }

    Some(Uuid::from_bytes(buf))
}

#[inline]
const fn parse_hyphenated(s: &[u8]) -> Option<Uuid> {
    // This length check here removes all other bounds
    // checks in this function
    if s.len() != 36 {
        return None;
    }

    // We look at two hex-encoded values (4 chars) at a time because
    // that's the size of the smallest group in a hyphenated UUID.
    // The indexes we're interested in are:
    //
    // uuid     : 936da01f-9abd-4d9d-80c7-02af85c822a8
    //            |   |   ||   ||   ||   ||   |   |
    // hyphens  : |   |   8|  13|  18|  23|   |   |
    // positions: 0   4    9   14   19   24  28  32

    // First, ensure the hyphens appear in the right places
    match [s[8], s[13], s[18], s[23]] {
        [b'-', b'-', b'-', b'-'] => {}
        _ => return None,
    }

    let positions: [u8; 8] = [0, 4, 9, 14, 19, 24, 28, 32];
    let mut buf: [u8; 16] = [0; 16];
    let mut j = 0;

    while j < 8 {
        let i = positions[j];

        // The decoding here is the same as the simple case
        // We're just dealing with two values instead of one
        let h1 = HEX_TABLE[s[i as usize] as usize];
        let h2 = HEX_TABLE[s[(i + 1) as usize] as usize];
        let h3 = HEX_TABLE[s[(i + 2) as usize] as usize];
        let h4 = HEX_TABLE[s[(i + 3) as usize] as usize];

        if h1 | h2 | h3 | h4 == 0xff {
            return None;
        }

        buf[j * 2] = SHL4_TABLE[h1 as usize] | h2;
        buf[j * 2 + 1] = SHL4_TABLE[h3 as usize] | h4;
        j += 1;
    }

    Some(Uuid::from_bytes(buf))
}

const HEX_TABLE: &[u8; 256] = &{
    let mut buf = [0; 256];
    let mut i: u8 = 0;

    loop {
        buf[i as usize] = match i {
            b'0'..=b'9' => i - b'0',
            b'a'..=b'f' => i - b'a' + 10,
            b'A'..=b'F' => i - b'A' + 10,
            _ => 0xff,
        };

        if i == 255 {
            break buf;
        }

        i += 1;
    }
};

const SHL4_TABLE: &[u8; 256] = &{
    let mut buf = [0; 256];
    let mut i: u8 = 0;

    loop {
        buf[i as usize] = i.wrapping_shl(4);

        if i == 255 {
            break buf;
        }

        i += 1;
    }
};