1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//! A library implementing a tournament tree data structure.
//!
//! Tournament trees are, conceptually, complete binary trees holding the result
//! of comparisons between each element of the tree. They can be used as a fixed
//! size priority queue for applications like out-of-core sorting, or
//! implementing many way joins.
//!
//! ```
//! use tournament_tree::TournamentTree;
//! # use std::cmp::Reverse;
//! let mut data1 = vec![3, 1, 4, 1, 5, 2, 6, 5];
//! let tourney_tree = TournamentTree::from(data1.clone());
//! data1.sort_by_key(|&e| Reverse(e));
//! let data2: Vec<_> = tourney_tree.into_iter().collect();
//! assert_eq!(data1, data2);
//! ```
use std::{iter::FromIterator, ops::Deref};

/// A tournament tree. See the module documentation for more details.
///
/// This is a max tree.
#[derive(Debug, Clone)]
pub struct TournamentTree<T> {
    data: Vec<T>,
    tree: Vec<usize>,
}

/// Immutable tournament tree iterator.
#[derive(Debug, Clone)]
pub struct Iter<'tree, T> {
    data: &'tree TournamentTree<T>,
    tree: Vec<usize>,
}

/// An iterator that moves out of the tournament
/// tree.
#[derive(Debug, Clone)]
pub struct IntoIter<T> {
    data: Vec<Option<T>>,
    tree: Vec<usize>,
}

impl<T: Ord> TournamentTree<T> {
    /// Returns the winner.
    ///
    /// # Panics
    /// If the tree is empty.
    pub fn winner(&self) -> &T {
        &self[self.winner_idx()]
    }

    /// The Index of the winner.
    ///
    /// # Panics
    /// If the tree is empty.
    pub fn winner_idx(&self) -> usize {
        self.tree[0]
    }

    fn build(data: Vec<T>) -> Self {
        let mut tree = vec![usize::MAX; data.len()];
        let k = data.len();
        for i in 0..data.len() {
            let mut winner = i;
            let mut j = (i + k) / 2;
            while j != 0 && tree[j] != usize::MAX {
                let challenger = tree[j];
                if data[challenger] > data[winner] {
                    tree[j] = winner;
                    winner = challenger;
                }
                j = j / 2;
            }
            tree[j] = winner;
        }

        Self { data, tree }
    }

    pub fn iter(&self) -> Iter<T> {
        Iter {
            data: self,
            tree: self.tree.clone(),
        }
    }
}

impl<T: Ord> Deref for TournamentTree<T> {
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        &self.data
    }
}

impl<T: Ord> From<Vec<T>> for TournamentTree<T> {
    fn from(data: Vec<T>) -> Self {
        Self::build(data)
    }
}

impl<T: Ord> Into<Vec<T>> for TournamentTree<T> {
    fn into(self) -> Vec<T> {
        self.data
    }
}

impl<T: Ord> AsRef<[T]> for TournamentTree<T> {
    fn as_ref(&self) -> &[T] {
        &self.data
    }
}

impl<T: Ord> FromIterator<T> for TournamentTree<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let data = Vec::from_iter(iter);
        Self::build(data)
    }
}

impl<T: Ord> IntoIterator for TournamentTree<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            data: self.data.into_iter().map(Some).collect(),
            tree: self.tree,
        }
    }
}

impl<'tree, T: Ord> IntoIterator for &'tree TournamentTree<T> {
    type Item = &'tree T;
    type IntoIter = Iter<'tree, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<T: Ord> Iterator for IntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        let k = self.data.len();
        if self.tree[0] == k {
            return None;
        }

        let i = self.tree[0];
        let mut winner = k;
        let mut j = (i + k) / 2;
        while j != 0 {
            let challenger = self.tree[j];
            if challenger != k && (winner == k || self.data[challenger] > self.data[winner]) {
                self.tree[j] = winner;
                winner = challenger;
            }
            j = j / 2;
        }
        self.tree[j] = winner;

        self.data[i].take()
    }
}

impl<'tree, T: Ord> Iterator for Iter<'tree, T> {
    type Item = &'tree T;

    fn next(&mut self) -> Option<Self::Item> {
        let k = self.data.len();
        if self.tree[0] == k {
            return None;
        }

        let i = self.tree[0];
        let mut winner = k;
        let mut j = (i + k) / 2;
        while j != 0 {
            let challenger = self.tree[j];
            if challenger != k
                && (winner == k || self.data.data[challenger] > self.data.data[winner])
            {
                self.tree[j] = winner;
                winner = challenger;
            }
            j = j / 2;
        }
        self.tree[j] = winner;

        Some(&self.data.data[i])
    }
}

/// A bounded priority queue using a `TournamentTree` for a backing structure.
///
/// Will replace each element removed with the next one from it's iterator until
/// all iterators are exhausted. If the iterators iterate in reverse sorted order, the
/// output will be in sorted order.
pub struct TournamentTreeIterator<T> {
    tt: TournamentTree<Option<T>>,
    its: Vec<Box<dyn Iterator<Item = T>>>,
}

pub struct TournamentTreeIteratorBuilder<T> {
    its: Vec<Box<dyn Iterator<Item = T>>>,
}

impl<T: Ord> TournamentTreeIterator<T> {
    /// Creates a new `TournamentTreeIteratorBuilder` for constructing a
    /// `TournamentTreeIterator`
    pub fn builder() -> TournamentTreeIteratorBuilder<T> {
        TournamentTreeIteratorBuilder { its: Vec::new() }
    }
}

impl<T: Ord> TournamentTreeIterator<T> {
    fn adv(&mut self) -> Option<T> {
        let i = self.tt.winner_idx();
        let k = self.tt.data.len();
        let ret = self.tt.data[i].take();
        self.tt.data[i] = self.its[i].next();
        let mut winner = i;
        let mut j = (i + k) / 2;
        while j != 0 {
            let challenger = self.tt.tree[j];
            if self.tt[challenger] > self.tt[winner] {
                self.tt.tree[j] = winner;
                winner = challenger;
            }
            j = j / 2;
        }
        self.tt.tree[j] = winner;

        ret
    }
}

impl<T: Ord> Iterator for TournamentTreeIterator<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        if self.tt.winner().is_none() {
            return None;
        }
        self.adv()
    }
}

impl<T: Ord> TournamentTreeIteratorBuilder<T> {
    /// Add an iterator to the eventual `TournamentTreeIterator`
    pub fn add(&mut self, it: impl Iterator<Item = T> + 'static) -> &mut Self {
        self.its.push(Box::new(it));
        self
    }

    /// Consumes the builder, returning the `TournamentTreeIterator`.
    pub fn build(mut self) -> TournamentTreeIterator<T> {
        let mut data = Vec::with_capacity(self.its.len());
        for it in self.its.iter_mut() {
            data.push(it.next());
        }

        TournamentTreeIterator {
            tt: TournamentTree::from(data),
            its: self.its,
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn basic() {
        let data = vec![3, 1, 4, 1, 5, 2, 6, 5];
        let tourney_tree = TournamentTree::build(data);
        assert_eq!(*tourney_tree.winner(), 6);
    }

    #[test]
    fn iter() {
        use std::cmp::Reverse;
        let mut data1 = vec![3, 1, 4, 1, 5, 2, 6, 5];
        let tourney_tree = TournamentTree::build(data1.clone());
        data1.sort_by_key(|&e| Reverse(e));
        let data2: Vec<_> = tourney_tree.iter().copied().collect();
        assert_eq!(data1, data2);
    }

    #[test]
    fn into_iter() {
        use std::cmp::Reverse;
        let mut data1 = vec![3, 1, 4, 1, 5, 2, 6, 5];
        let tourney_tree = TournamentTree::build(data1.clone());
        data1.sort_by_key(|&e| Reverse(e));
        let data2: Vec<_> = tourney_tree.into_iter().collect();
        assert_eq!(data1, data2);
    }

    #[test]
    fn iterator() {
        let mut ttib = TournamentTreeIterator::builder();
        ttib.add(vec![7, 5, 3, 1].into_iter())
            .add(vec![16, 8, 4, 2, 1].into_iter())
            .add(vec![11, 7, 5, 3, 2].into_iter())
            .add(vec![25, 16, 9, 4, 1, 0].into_iter());
        let v: Vec<_> = ttib.build().collect();
        assert_eq!(
            v,
            [25, 16, 16, 11, 9, 8, 7, 7, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 0]
        );
    }
}