1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#[allow(dead_code)]
#[derive(Debug)]
#[non_exhaustive]
pub struct Unsortable;

fn sorted_indices<T: PartialOrd>(v: &[T]) -> Result<Vec<usize>, Unsortable> {
    let mut original: Vec<usize> = (0..v.len()).collect();
    let mut errored = false;
    original.sort_by(|a, b| match v[*a].partial_cmp(&v[*b]) {
        Some(ordering) => ordering,
        None => {
            errored = true;
            core::cmp::Ordering::Equal
        }
    });
    if errored {
        return Err(Unsortable);
    }
    Ok(original)
}

pub enum Direction {
    Left,
    Right,
    None,
}

#[derive(Debug)]
pub struct Homology {
    left_extent: usize,
    right_extent: usize,
    peak: usize,
}

impl Homology {
    /// Determines if an index is adjacent to a topological region.
    ///
    ///# Arguments
    /// * `idx` - an index location in an array.
    pub fn is_adjacent(&self, idx: usize) -> Direction {
        if (self.left_extent > 0) && (idx == (self.left_extent - 1)) {
            Direction::Left
        } else if idx == self.right_extent + 1 {
            Direction::Right
        } else {
            Direction::None
        }
    }

    /// extend's a region one hop to the left.
    pub fn extend_left(&mut self) {
        self.left_extent -= 1;
    }

    /// extend's a region one hop to the right.
    pub fn extend_right(&mut self) {
        self.right_extent += 1;
    }

    /// accessor method for aquiring the peak index associated with this region.
    pub fn get_peak_idx(&self) -> usize {
        self.peak
    }
}

pub fn find_homologies<T: PartialOrd>(x: &[T]) -> Result<Vec<Homology>, Unsortable> {
    if x.len() == 0 {
        return Err(Unsortable);
    }
    let sorted_idxs = sorted_indices(x)?.into_iter();
    let mut homologies = Vec::<Homology>::with_capacity(70);

    for set_idx in sorted_idxs.into_iter().rev() {
        let mut found_home = false;
        for homology in (&mut homologies).iter_mut() {
            match homology.is_adjacent(set_idx) {
                Direction::Left => {
                    homology.extend_left();
                    found_home = true;
                }
                Direction::Right => {
                    homology.extend_right();
                    found_home = true;
                }
                Direction::None => continue,
            }
            if found_home {
                break;
            }
        }
        if !found_home {
            homologies.push(Homology {
                left_extent: set_idx,
                right_extent: set_idx,
                peak: set_idx,
            });
        }
    }
    Ok(homologies)
}

pub fn get_peaks(x: &[Homology]) -> Vec<usize> {
    x.iter().map(|x| x.get_peak_idx()).collect()
}

#[cfg(test)]
mod tests {
    use crate::{find_homologies, get_peaks};
    use std::f32::consts::PI;

    #[test]
    fn sinusoid_test() {
        let tst_vec: Vec<f32> = (0..6001)
            .map(|x| ((x as f32 / 1000_f32) * PI).sin())
            .collect();
        let check = tst_vec[10].clone();
        let homologies = find_homologies(&tst_vec).unwrap();
        let x = get_peaks(&homologies);
        assert_eq!(x.contains(&500), true);
        assert_eq!(x.contains(&2500), true);
        assert_eq!(x.contains(&4500), true);
        assert_eq!(x.contains(&6000), true);
        assert_eq!(x.len(), 4);
        assert_eq!(check, tst_vec[10]);
        println!("{:?}", homologies);
    }

    #[test]
    fn sinusoid_double_test() {
        let tst_vec: Vec<f64> = (0..6001)
            .map(|x| ((x as f64 / 1000_f64) * std::f64::consts::PI).sin())
            .collect();
        let check = tst_vec[10].clone();
        let homologies = find_homologies(&tst_vec).unwrap();
        let x = get_peaks(&homologies);
        assert_eq!(x.contains(&500), true);
        assert_eq!(x.contains(&2500), true);
        assert_eq!(x.contains(&4500), true);
        assert_eq!(x.contains(&6000), true);
        assert_eq!(x.len(), 4);
        assert_eq!(check, tst_vec[10]);
    }

    #[test]
    fn integer_test() {
        let tst_vec: Vec<i32> = vec![1, 2, 3, 4, 5, 4, 3, 6, 3, 1, 1, 1, 5];
        let homologies = find_homologies(&tst_vec).unwrap();
        let x = get_peaks(&homologies);
        assert_eq!(x.contains(&4), true);
        assert_eq!(x.contains(&7), true);
        assert_eq!(x.contains(&12), true);
        assert_eq!(x.len(), 3);
    }
    #[test]
    fn failure_test() {
        let tst_vec: Vec<f32> = vec![1., 2., 3., 4., 5., std::f32::NAN, 1.0];
        let failed = match find_homologies(&tst_vec){
            Ok(_) => false,
            Err(_) => true,
        };
        assert_eq!(failed, true);
    }
}