1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#![doc(html_root_url = "https://docs.rs/tokio-mock-task/0.1.0")]
#![deny(missing_debug_implementations, missing_docs)]
#![cfg_attr(test, deny(warnings))]

//! Wrap Tokio based code with a mock task.
//!
//! This allows writing tests that are able to assert that a task is notified on
//! an event.

extern crate futures;

use futures::{future, Async};
use futures::executor::{spawn, Notify};

use std::sync::{Arc, Mutex, Condvar};
use std::sync::atomic::{AtomicUsize, Ordering};

/// Mock task
///
/// A mock task is able to intercept and track notifications.
#[derive(Debug)]
pub struct MockTask {
    notify: Arc<ThreadNotify>,
}

#[derive(Debug)]
struct ThreadNotify {
    state: AtomicUsize,
    mutex: Mutex<()>,
    condvar: Condvar,
}

const IDLE: usize = 0;
const NOTIFY: usize = 1;
const SLEEP: usize = 2;

impl MockTask {
    /// Create a new mock task
    pub fn new() -> Self {
        MockTask {
            notify: Arc::new(ThreadNotify::new()),
        }
    }

    /// Run a closure from the context of the task.
    ///
    /// Any notifications resulting from the execution of the closure are
    /// tracked.
    pub fn enter<F, R>(&mut self, f: F) -> R
    where F: FnOnce() -> R,
    {
        self.notify.clear();

        let res = spawn(future::lazy(|| {
            Ok::<_, ()>(f())
        })).poll_future_notify(&self.notify, 0);

        match res.unwrap() {
            Async::Ready(v) => v,
            _ => unreachable!(),
        }
    }

    /// Returns `true` if the inner future has received a readiness notification
    /// since the last call to `enter`.
    pub fn is_notified(&self) -> bool {
        self.notify.is_notified()
    }
}

impl ThreadNotify {
    fn new() -> Self {
        ThreadNotify {
            state: AtomicUsize::new(IDLE),
            mutex: Mutex::new(()),
            condvar: Condvar::new(),
        }
    }

    /// Clears any previously received notify, avoiding potential spurrious
    /// notifications. This should only be called immediately before running the
    /// task.
    fn clear(&self) {
        self.state.store(IDLE, Ordering::SeqCst);
    }

    fn is_notified(&self) -> bool {
        match self.state.load(Ordering::SeqCst) {
            IDLE => false,
            NOTIFY => true,
            _ => unreachable!(),
        }
    }
}

impl Notify for ThreadNotify {
    fn notify(&self, _unpark_id: usize) {
        // First, try transitioning from IDLE -> NOTIFY, this does not require a
        // lock.
        match self.state.compare_and_swap(IDLE, NOTIFY, Ordering::SeqCst) {
            IDLE | NOTIFY => return,
            SLEEP => {}
            _ => unreachable!(),
        }

        // The other half is sleeping, this requires a lock
        let _m = self.mutex.lock().unwrap();

        // Transition from SLEEP -> NOTIFY
        match self.state.compare_and_swap(SLEEP, NOTIFY, Ordering::SeqCst) {
            SLEEP => {}
            _ => return,
        }

        // Wakeup the sleeper
        self.condvar.notify_one();
    }
}