The core of tokenizers, written in Rust.
Provides an implementation of today's most used tokenizers, with a focus on performance and
versatility.
What is a Tokenizer
A Tokenizer works as a pipeline, it processes some raw text as input and outputs an Encoding.
The various steps of the pipeline are:
- The
Normalizer: in charge of normalizing the text. Common examples of normalization are
the unicode normalization standards, such as NFD or NFKC.
More details about how to use the Normalizers are available on the
Hugging Face blog
- The
PreTokenizer: in charge of creating initial words splits in the text. The most common way of
splitting text is simply on whitespace.
- The
Model: in charge of doing the actual tokenization. An example of a Model would be
BPE or WordPiece.
- The
PostProcessor: in charge of post-processing the Encoding to add anything relevant
that, for example, a language model would need, such as special tokens.
Loading a pretrained tokenizer from the Hub
use tokenizers::tokenizer::{Result, Tokenizer};
fn main() -> Result<()> {
# #[cfg(feature = "http")]
# {
let tokenizer = Tokenizer::from_pretrained("bert-base-cased", None)?;
let encoding = tokenizer.encode("Hey there!", false)?;
println!("{:?}", encoding.get_tokens());
# }
Ok(())
}
Deserialization and tokenization example
use tokenizers::tokenizer::{Result, Tokenizer, EncodeInput};
use tokenizers::models::bpe::BPE;
fn main() -> Result<()> {
let bpe_builder = BPE::from_file("./path/to/vocab.json", "./path/to/merges.txt");
let bpe = bpe_builder
.dropout(0.1)
.unk_token("[UNK]".into())
.build()?;
let mut tokenizer = Tokenizer::new(bpe);
let encoding = tokenizer.encode("Hey there!", false)?;
println!("{:?}", encoding.get_tokens());
Ok(())
}
Training and serialization example
use tokenizers::decoders::DecoderWrapper;
use tokenizers::models::bpe::{BpeTrainerBuilder, BPE};
use tokenizers::normalizers::{strip::Strip, unicode::NFC, utils::Sequence, NormalizerWrapper};
use tokenizers::pre_tokenizers::byte_level::ByteLevel;
use tokenizers::pre_tokenizers::PreTokenizerWrapper;
use tokenizers::processors::PostProcessorWrapper;
use tokenizers::{AddedToken, Model, Result, TokenizerBuilder};
use std::path::Path;
fn main() -> Result<()> {
let vocab_size: usize = 100;
let mut trainer = BpeTrainerBuilder::new()
.show_progress(true)
.vocab_size(vocab_size)
.min_frequency(0)
.special_tokens(vec![
AddedToken::from(String::from("<s>"), true),
AddedToken::from(String::from("<pad>"), true),
AddedToken::from(String::from("</s>"), true),
AddedToken::from(String::from("<unk>"), true),
AddedToken::from(String::from("<mask>"), true),
])
.build();
let mut tokenizer = TokenizerBuilder::new()
.with_model(BPE::default())
.with_normalizer(Some(Sequence::new(vec![
Strip::new(true, true).into(),
NFC.into(),
])))
.with_pre_tokenizer(Some(ByteLevel::default()))
.with_post_processor(Some(ByteLevel::default()))
.with_decoder(Some(ByteLevel::default()))
.build()?;
let pretty = false;
tokenizer
.train_from_files(
&mut trainer,
vec!["path/to/vocab.txt".to_string()],
)?
.save("tokenizer.json", pretty)?;
Ok(())
}
Additional information
- tokenizers is designed to leverage CPU parallelism when possible. The level of parallelism is determined
by the total number of core/threads your CPU provides but this can be tuned by setting the
RAYON_RS_NUM_THREADS
environment variable. As an example setting RAYON_RS_NUM_THREADS=4 will allocate a maximum of 4 threads.
Please note this behavior may evolve in the future
Features
progressbar: The progress bar visualization is enabled by default. It might be disabled if
compilation for certain targets is not supported by the termios
dependency of the indicatif progress bar.