1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Evgeniy Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cmp;

use crate::{IntRect, Point};

use crate::floating_point::{SaturateRound, FiniteF32};
use crate::wide::f32x4;

/// A rectangle defined by left, top, right and bottom edges.
///
/// Can have zero width and/or height. But not a negative one.
///
/// # Guarantees
///
/// - All values are finite.
/// - Left edge is <= right.
/// - Top edge is <= bottom.
/// - Width and height are <= f32::MAX.
#[allow(missing_docs)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct Rect {
    left: FiniteF32,
    top: FiniteF32,
    right: FiniteF32,
    bottom: FiniteF32,
}

impl Rect {
    /// Creates new `Rect`.
    #[inline]
    pub fn from_ltrb(left: f32, top: f32, right: f32, bottom: f32) -> Option<Self> {
        let left = FiniteF32::new(left)?;
        let top = FiniteF32::new(top)?;
        let right = FiniteF32::new(right)?;
        let bottom = FiniteF32::new(bottom)?;

        if left.get() <= right.get() && top.get() <= bottom.get() {
            // Width and height must not overflow.
            checked_f32_sub(right.get(), left.get())?;
            checked_f32_sub(bottom.get(), top.get())?;

            Some(Rect { left, top, right, bottom })
        } else {
            None
        }
    }

    /// Creates new `Rect`.
    #[inline]
    pub fn from_xywh(x: f32, y: f32, w: f32, h: f32) -> Option<Self> {
        Rect::from_ltrb(x, y, w + x, h + y)
    }

    /// Returns the left edge.
    #[inline]
    pub fn left(&self) -> f32 {
        self.left.get()
    }

    /// Returns the top edge.
    #[inline]
    pub fn top(&self) -> f32 {
        self.top.get()
    }

    /// Returns the right edge.
    #[inline]
    pub fn right(&self) -> f32 {
        self.right.get()
    }

    /// Returns the bottom edge.
    #[inline]
    pub fn bottom(&self) -> f32 {
        self.bottom.get()
    }

    /// Returns rect's X position.
    #[inline]
    pub fn x(&self) -> f32 {
        self.left.get()
    }

    /// Returns rect's Y position.
    #[inline]
    pub fn y(&self) -> f32 {
        self.top.get()
    }

    /// Returns rect's width.
    #[inline]
    pub fn width(&self) -> f32 {
        self.right.get() - self.left.get()
    }

    /// Returns rect's height.
    #[inline]
    pub fn height(&self) -> f32 {
        self.bottom.get() - self.top.get()
    }

    /// Converts into an `IntRect` by adding 0.5 and discarding the fractional portion.
    ///
    /// Width and height are guarantee to be >= 1.
    #[inline]
    pub fn round(&self) -> IntRect {
        IntRect::from_xywh(
            i32::saturate_round(self.x()),
            i32::saturate_round(self.y()),
            cmp::max(1, i32::saturate_round(self.width()) as u32),
            cmp::max(1, i32::saturate_round(self.height()) as u32),
        ).unwrap()
    }

    /// Converts into an `IntRect` rounding outwards.
    ///
    /// Width and height are guarantee to be >= 1.
    #[inline]
    pub(crate) fn round_out(&self) -> IntRect {
        IntRect::from_xywh(
            i32::saturate_floor(self.x()),
            i32::saturate_floor(self.y()),
            cmp::max(1, i32::saturate_ceil(self.width()) as u32),
            cmp::max(1, i32::saturate_ceil(self.height()) as u32),
        ).unwrap()
    }

    /// Returns an intersection of two rectangles.
    ///
    /// Returns `None` otherwise.
    pub(crate) fn intersect(&self, other: &Self) -> Option<Self> {
        let left = self.x().max(other.x());
        let top = self.y().max(other.y());

        let right = self.right().min(other.right());
        let bottom = self.bottom().min(other.bottom());

        Rect::from_ltrb(left, top, right, bottom)
    }

    /// Creates a Rect from Point array.
    ///
    /// Returns None if count is zero or if Point array contains an infinity or NaN.
    pub(crate) fn from_points(points: &[Point]) -> Option<Self> {
        if points.is_empty() {
            return None;
        }

        let mut offset = 0;
        let mut min;
        let mut max;
        if points.len() & 1 != 0 {
            let pt = points[0];
            min = f32x4::from([pt.x, pt.y, pt.x, pt.y]);
            max = min;
            offset += 1;
        } else {
            let pt0 = points[0];
            let pt1 = points[1];
            min = f32x4::from([pt0.x, pt0.y, pt1.x, pt1.y]);
            max = min;
            offset += 2;
        }

        let mut accum = f32x4::default();
        while offset != points.len() {
            let pt0 = points[offset + 0];
            let pt1 = points[offset + 1];
            let xy = f32x4::from([pt0.x, pt0.y, pt1.x, pt1.y]);

            accum *= xy;
            min = min.min(xy);
            max = max.max(xy);
            offset += 2;
        }

        let all_finite = accum * f32x4::default() == f32x4::default();
        let min: [f32; 4] = min.into();
        let max: [f32; 4] = max.into();
        if all_finite {
            Rect::from_ltrb(
                min[0].min(min[2]),
                min[1].min(min[3]),
                max[0].max(max[2]),
                max[1].max(max[3]),
            )
        } else {
            None
        }
    }

    pub(crate) fn inset(&mut self, dx: f32, dy: f32) -> Option<Self> {
        Rect::from_ltrb(
            self.left() + dx,
            self.top() + dy,
            self.right() - dx,
            self.bottom() - dy,
        )
    }

    pub(crate) fn outset(&mut self, dx: f32, dy: f32) -> Option<Self> {
        self.inset(-dx, -dy)
    }
}

#[inline]
fn checked_f32_sub(a: f32, b: f32) -> Option<f32> {
    debug_assert!(a.is_finite());
    debug_assert!(b.is_finite());

    let n = a as f64 - b as f64;
    // Not sure if this is perfectly correct.
    if n > std::f32::MIN as f64 && n < std::f32::MAX as f64 {
        Some(n as f32)
    } else {
        None
    }
}


#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn tests() {
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 5.0, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 10.0, 5.0), None);
        assert_eq!(Rect::from_ltrb(std::f32::NAN, 10.0, 10.0, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, std::f32::NAN, 10.0, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, std::f32::NAN, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 10.0, std::f32::NAN), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 10.0, std::f32::INFINITY), None);

        let rect = Rect::from_ltrb(10.0, 20.0, 30.0, 40.0).unwrap();
        assert_eq!(rect.left(), 10.0);
        assert_eq!(rect.top(), 20.0);
        assert_eq!(rect.right(), 30.0);
        assert_eq!(rect.bottom(), 40.0);
        assert_eq!(rect.width(), 20.0);
        assert_eq!(rect.height(), 20.0);

        let rect = Rect::from_ltrb(-30.0, 20.0, -10.0, 40.0).unwrap();
        assert_eq!(rect.width(), 20.0);
        assert_eq!(rect.height(), 20.0);
    }
}