1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/* ***********************************************************
 * This file was automatically generated on 2018-11-08.      *
 *                                                           *
 * Rust Bindings Version 2.0.3                               *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! 4 galvanically isolated digital outputs
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::IpConnection,
};
pub enum IndustrialDigitalOut4BrickletFunction {
    SetValue,
    GetValue,
    SetMonoflop,
    GetMonoflop,
    SetGroup,
    GetGroup,
    GetAvailableForGroup,
    SetSelectedValues,
    GetIdentity,
    CallbackMonoflopDone,
}
impl From<IndustrialDigitalOut4BrickletFunction> for u8 {
    fn from(fun: IndustrialDigitalOut4BrickletFunction) -> Self {
        match fun {
            IndustrialDigitalOut4BrickletFunction::SetValue => 1,
            IndustrialDigitalOut4BrickletFunction::GetValue => 2,
            IndustrialDigitalOut4BrickletFunction::SetMonoflop => 3,
            IndustrialDigitalOut4BrickletFunction::GetMonoflop => 4,
            IndustrialDigitalOut4BrickletFunction::SetGroup => 5,
            IndustrialDigitalOut4BrickletFunction::GetGroup => 6,
            IndustrialDigitalOut4BrickletFunction::GetAvailableForGroup => 7,
            IndustrialDigitalOut4BrickletFunction::SetSelectedValues => 9,
            IndustrialDigitalOut4BrickletFunction::GetIdentity => 255,
            IndustrialDigitalOut4BrickletFunction::CallbackMonoflopDone => 8,
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Monoflop {
    pub value: u16,
    pub time: u32,
    pub time_remaining: u32,
}
impl FromByteSlice for Monoflop {
    fn bytes_expected() -> usize { 10 }
    fn from_le_bytes(bytes: &[u8]) -> Monoflop {
        Monoflop {
            value: <u16>::from_le_bytes(&bytes[0..2]),
            time: <u32>::from_le_bytes(&bytes[2..6]),
            time_remaining: <u32>::from_le_bytes(&bytes[6..10]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MonoflopDoneEvent {
    pub selection_mask: u16,
    pub value_mask: u16,
}
impl FromByteSlice for MonoflopDoneEvent {
    fn bytes_expected() -> usize { 4 }
    fn from_le_bytes(bytes: &[u8]) -> MonoflopDoneEvent {
        MonoflopDoneEvent { selection_mask: <u16>::from_le_bytes(&bytes[0..2]), value_mask: <u16>::from_le_bytes(&bytes[2..4]) }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_bytes(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_bytes(&bytes[0..8]),
            connected_uid: <String>::from_le_bytes(&bytes[8..16]),
            position: <char>::from_le_bytes(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_bytes(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_bytes(&bytes[20..23]),
            device_identifier: <u16>::from_le_bytes(&bytes[23..25]),
        }
    }
}

/// 4 galvanically isolated digital outputs
#[derive(Clone)]
pub struct IndustrialDigitalOut4Bricklet {
    device: Device,
}
impl IndustrialDigitalOut4Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 224;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Industrial Digital Out 4 Bricklet";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new(uid: &str, ip_connection: &IpConnection) -> IndustrialDigitalOut4Bricklet {
        let mut result = IndustrialDigitalOut4Bricklet { device: Device::new([2, 0, 0], uid, ip_connection, 0) };
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::SetValue) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::GetValue) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::SetMonoflop) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::GetMonoflop) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::SetGroup) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::GetGroup) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::GetAvailableForGroup) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::SetSelectedValues) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(IndustrialDigitalOut4BrickletFunction::GetIdentity) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::industrial_digital_out_4_bricklet::IndustrialDigitalOut4Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::industrial_digital_out_4_bricklet::IndustrialDigitalOut4Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: IndustrialDigitalOut4BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: IndustrialDigitalOut4BrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// This receiver is triggered whenever a monoflop timer reaches 0. The
    /// parameters contain the involved pins and the current value of the pins
    /// (the value after the monoflop).
    pub fn get_monoflop_done_callback_receiver(&self) -> ConvertingCallbackReceiver<MonoflopDoneEvent> {
        self.device.get_callback_receiver(u8::from(IndustrialDigitalOut4BrickletFunction::CallbackMonoflopDone))
    }

    /// Sets the output value with a bitmask (16bit). A 1 in the bitmask means high
    /// and a 0 in the bitmask means low.
    ///
    /// For example: The value 3 or 0b0011 will turn pins 0-1 high and the other pins
    /// low.
    ///
    /// If no groups are used (see `Set Group`), the pins correspond to the
    /// markings on the Digital Out 4 Bricklet.
    ///
    /// If groups are used, the pins correspond to the element in the group.
    /// Element 1 in the group will get pins 0-3, element 2 pins 4-7, element 3
    /// pins 8-11 and element 4 pins 12-15.
    pub fn set_value(&self, value_mask: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_bytes(value_mask));

        self.device.set(u8::from(IndustrialDigitalOut4BrickletFunction::SetValue), payload)
    }

    /// Returns the bitmask as set by `Set Value`.
    pub fn get_value(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDigitalOut4BrickletFunction::GetValue), payload)
    }

    /// Configures a monoflop of the pins specified by the first parameter
    /// bitmask.
    ///
    /// The second parameter is a bitmask with the desired value of the specified
    /// pins. A 1 in the bitmask means high and a 0 in the bitmask means low.
    ///
    /// The third parameter indicates the time (in ms) that the pins should hold
    /// the value.
    ///
    /// If this function is called with the parameters (9, 1, 1500) or
    /// (0b1001, 0b0001, 1500): Pin 0 will get high and pin 3 will get low. In 1.5s
    /// pin 0 will get low and pin 3 will get high again.
    ///
    /// A monoflop can be used as a fail-safe mechanism. For example: Lets assume you
    /// have a RS485 bus and a Digital Out 4 Bricklet connected to one of the slave
    /// stacks. You can now call this function every second, with a time parameter
    /// of two seconds and pin 0 high. Pin 0 will be high all the time. If now
    /// the RS485 connection is lost, then pin 0 will turn low in at most two seconds.
    pub fn set_monoflop(&self, selection_mask: u16, value_mask: u16, time: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 8];
        payload[0..2].copy_from_slice(&<u16>::to_le_bytes(selection_mask));
        payload[2..4].copy_from_slice(&<u16>::to_le_bytes(value_mask));
        payload[4..8].copy_from_slice(&<u32>::to_le_bytes(time));

        self.device.set(u8::from(IndustrialDigitalOut4BrickletFunction::SetMonoflop), payload)
    }

    /// Returns (for the given pin) the current value and the time as set by
    /// `Set Monoflop` as well as the remaining time until the value flips.
    ///
    /// If the timer is not running currently, the remaining time will be returned
    /// as 0.
    pub fn get_monoflop(&self, pin: u8) -> ConvertingReceiver<Monoflop> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(pin));

        self.device.get(u8::from(IndustrialDigitalOut4BrickletFunction::GetMonoflop), payload)
    }

    /// Sets a group of Digital Out 4 Bricklets that should work together. You can
    /// find Bricklets that can be grouped together with `Get Available For Group`.
    ///
    /// The group consists of 4 elements. Element 1 in the group will get pins 0-3,
    /// element 2 pins 4-7, element 3 pins 8-11 and element 4 pins 12-15.
    ///
    /// Each element can either be one of the ports ('a' to 'd') or 'n' if it should
    /// not be used.
    ///
    /// For example: If you have two Digital Out 4 Bricklets connected to port A and
    /// port B respectively, you could call with ``['a', 'b', 'n', 'n']``.
    ///
    /// Now the pins on the Digital Out 4 on port A are assigned to 0-3 and the
    /// pins on the Digital Out 4 on port B are assigned to 4-7. It is now possible
    /// to call `Set Value` and control two Bricklets at the same time.
    pub fn set_group(&self, group: [char; 4]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<[char; 4]>::to_le_bytes(group));

        self.device.set(u8::from(IndustrialDigitalOut4BrickletFunction::SetGroup), payload)
    }

    /// Returns the group as set by `Set Group`
    pub fn get_group(&self) -> ConvertingReceiver<[char; 4]> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDigitalOut4BrickletFunction::GetGroup), payload)
    }

    /// Returns a bitmask of ports that are available for grouping. For example the
    /// value 5 or 0b0101 means: Port A and port C are connected to Bricklets that
    /// can be grouped together.
    pub fn get_available_for_group(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDigitalOut4BrickletFunction::GetAvailableForGroup), payload)
    }

    /// Sets the output value with a bitmask, according to the selection mask.
    /// The bitmask is 16 bit long, *true* refers to high and *false* refers to
    /// low.
    ///
    /// For example: The values (3, 1) or (0b0011, 0b0001) will turn pin 0 high, pin 1
    /// low the other pins remain untouched.
    ///
    /// If no groups are used (see `Set Group`), the pins correspond to the
    /// markings on the Digital Out 4 Bricklet.
    ///
    /// If groups are used, the pins correspond to the element in the group.
    /// Element 1 in the group will get pins 0-3, element 2 pins 4-7, element 3
    /// pins 8-11 and element 4 pins 12-15.
    pub fn set_selected_values(&self, selection_mask: u16, value_mask: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..2].copy_from_slice(&<u16>::to_le_bytes(selection_mask));
        payload[2..4].copy_from_slice(&<u16>::to_le_bytes(value_mask));

        self.device.set(u8::from(IndustrialDigitalOut4BrickletFunction::SetSelectedValues), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c' or 'd'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(IndustrialDigitalOut4BrickletFunction::GetIdentity), payload)
    }
}