1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/* ***********************************************************
 * This file was automatically generated on 2018-11-08.      *
 *                                                           *
 * Rust Bindings Version 2.0.3                               *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! 7.1cm (2.8") display with 128x64 pixel and touch screen
use crate::{
    byte_converter::*,
    converting_callback_receiver::ConvertingCallbackReceiver,
    converting_receiver::{BrickletError, BrickletRecvTimeoutError, ConvertingReceiver},
    device::*,
    ip_connection::IpConnection,
    low_level_traits::*,
};
pub enum Lcd128x64BrickletFunction {
    WritePixelsLowLevel,
    ReadPixelsLowLevel,
    ClearDisplay,
    SetDisplayConfiguration,
    GetDisplayConfiguration,
    WriteLine,
    DrawBufferedFrame,
    GetTouchPosition,
    SetTouchPositionCallbackConfiguration,
    GetTouchPositionCallbackConfiguration,
    GetTouchGesture,
    SetTouchGestureCallbackConfiguration,
    GetTouchGestureCallbackConfiguration,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackTouchPosition,
    CallbackTouchGesture,
}
impl From<Lcd128x64BrickletFunction> for u8 {
    fn from(fun: Lcd128x64BrickletFunction) -> Self {
        match fun {
            Lcd128x64BrickletFunction::WritePixelsLowLevel => 1,
            Lcd128x64BrickletFunction::ReadPixelsLowLevel => 2,
            Lcd128x64BrickletFunction::ClearDisplay => 3,
            Lcd128x64BrickletFunction::SetDisplayConfiguration => 4,
            Lcd128x64BrickletFunction::GetDisplayConfiguration => 5,
            Lcd128x64BrickletFunction::WriteLine => 6,
            Lcd128x64BrickletFunction::DrawBufferedFrame => 7,
            Lcd128x64BrickletFunction::GetTouchPosition => 8,
            Lcd128x64BrickletFunction::SetTouchPositionCallbackConfiguration => 9,
            Lcd128x64BrickletFunction::GetTouchPositionCallbackConfiguration => 10,
            Lcd128x64BrickletFunction::GetTouchGesture => 12,
            Lcd128x64BrickletFunction::SetTouchGestureCallbackConfiguration => 13,
            Lcd128x64BrickletFunction::GetTouchGestureCallbackConfiguration => 14,
            Lcd128x64BrickletFunction::GetSpitfpErrorCount => 234,
            Lcd128x64BrickletFunction::SetBootloaderMode => 235,
            Lcd128x64BrickletFunction::GetBootloaderMode => 236,
            Lcd128x64BrickletFunction::SetWriteFirmwarePointer => 237,
            Lcd128x64BrickletFunction::WriteFirmware => 238,
            Lcd128x64BrickletFunction::SetStatusLedConfig => 239,
            Lcd128x64BrickletFunction::GetStatusLedConfig => 240,
            Lcd128x64BrickletFunction::GetChipTemperature => 242,
            Lcd128x64BrickletFunction::Reset => 243,
            Lcd128x64BrickletFunction::WriteUid => 248,
            Lcd128x64BrickletFunction::ReadUid => 249,
            Lcd128x64BrickletFunction::GetIdentity => 255,
            Lcd128x64BrickletFunction::CallbackTouchPosition => 11,
            Lcd128x64BrickletFunction::CallbackTouchGesture => 15,
        }
    }
}
pub const LCD_128X64_BRICKLET_GESTURE_LEFT_TO_RIGHT: u8 = 0;
pub const LCD_128X64_BRICKLET_GESTURE_RIGHT_TO_LEFT: u8 = 1;
pub const LCD_128X64_BRICKLET_GESTURE_TOP_TO_BOTTOM: u8 = 2;
pub const LCD_128X64_BRICKLET_GESTURE_BOTTOM_TO_TOP: u8 = 3;
pub const LCD_128X64_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const LCD_128X64_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const LCD_128X64_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const LCD_128X64_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const LCD_128X64_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const LCD_128X64_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const LCD_128X64_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const LCD_128X64_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const LCD_128X64_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const LCD_128X64_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const LCD_128X64_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const LCD_128X64_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const LCD_128X64_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const LCD_128X64_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const LCD_128X64_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WritePixelsLowLevel {}
impl FromByteSlice for WritePixelsLowLevel {
    fn bytes_expected() -> usize { 0 }
    fn from_le_bytes(_bytes: &[u8]) -> WritePixelsLowLevel { WritePixelsLowLevel {} }
}
impl LowLevelWrite<WritePixelsResult> for WritePixelsLowLevel {
    fn ll_message_written(&self) -> usize { 448 }

    fn get_result(&self) -> WritePixelsResult { WritePixelsResult {} }
}

#[derive(Clone, Copy)]
pub struct ReadPixelsLowLevel {
    pub pixels_length: u16,
    pub pixels_chunk_offset: u16,
    pub pixels_chunk_data: [bool; 480],
}
impl FromByteSlice for ReadPixelsLowLevel {
    fn bytes_expected() -> usize { 64 }
    fn from_le_bytes(bytes: &[u8]) -> ReadPixelsLowLevel {
        ReadPixelsLowLevel {
            pixels_length: <u16>::from_le_bytes(&bytes[0..2]),
            pixels_chunk_offset: <u16>::from_le_bytes(&bytes[2..4]),
            pixels_chunk_data: <[bool; 480]>::from_le_bytes(&bytes[4..64]),
        }
    }
}
impl LowLevelRead<bool, ReadPixelsResult> for ReadPixelsLowLevel {
    fn ll_message_length(&self) -> usize { self.pixels_length as usize }

    fn ll_message_chunk_offset(&self) -> usize { self.pixels_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[bool] { &self.pixels_chunk_data }

    fn get_result(&self) -> ReadPixelsResult { ReadPixelsResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct DisplayConfiguration {
    pub contrast: u8,
    pub backlight: u8,
    pub invert: bool,
    pub automatic_draw: bool,
}
impl FromByteSlice for DisplayConfiguration {
    fn bytes_expected() -> usize { 4 }
    fn from_le_bytes(bytes: &[u8]) -> DisplayConfiguration {
        DisplayConfiguration {
            contrast: <u8>::from_le_bytes(&bytes[0..1]),
            backlight: <u8>::from_le_bytes(&bytes[1..2]),
            invert: <bool>::from_le_bytes(&bytes[2..3]),
            automatic_draw: <bool>::from_le_bytes(&bytes[3..4]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TouchPosition {
    pub pressure: u16,
    pub x: u16,
    pub y: u16,
    pub age: u32,
}
impl FromByteSlice for TouchPosition {
    fn bytes_expected() -> usize { 10 }
    fn from_le_bytes(bytes: &[u8]) -> TouchPosition {
        TouchPosition {
            pressure: <u16>::from_le_bytes(&bytes[0..2]),
            x: <u16>::from_le_bytes(&bytes[2..4]),
            y: <u16>::from_le_bytes(&bytes[4..6]),
            age: <u32>::from_le_bytes(&bytes[6..10]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TouchPositionCallbackConfiguration {
    pub period: u32,
    pub value_has_to_change: bool,
}
impl FromByteSlice for TouchPositionCallbackConfiguration {
    fn bytes_expected() -> usize { 5 }
    fn from_le_bytes(bytes: &[u8]) -> TouchPositionCallbackConfiguration {
        TouchPositionCallbackConfiguration {
            period: <u32>::from_le_bytes(&bytes[0..4]),
            value_has_to_change: <bool>::from_le_bytes(&bytes[4..5]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TouchPositionEvent {
    pub pressure: u16,
    pub x: u16,
    pub y: u16,
    pub age: u32,
}
impl FromByteSlice for TouchPositionEvent {
    fn bytes_expected() -> usize { 10 }
    fn from_le_bytes(bytes: &[u8]) -> TouchPositionEvent {
        TouchPositionEvent {
            pressure: <u16>::from_le_bytes(&bytes[0..2]),
            x: <u16>::from_le_bytes(&bytes[2..4]),
            y: <u16>::from_le_bytes(&bytes[4..6]),
            age: <u32>::from_le_bytes(&bytes[6..10]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TouchGesture {
    pub gesture: u8,
    pub duration: u32,
    pub pressure_max: u16,
    pub x_start: u16,
    pub y_start: u16,
    pub x_end: u16,
    pub y_end: u16,
    pub age: u32,
}
impl FromByteSlice for TouchGesture {
    fn bytes_expected() -> usize { 19 }
    fn from_le_bytes(bytes: &[u8]) -> TouchGesture {
        TouchGesture {
            gesture: <u8>::from_le_bytes(&bytes[0..1]),
            duration: <u32>::from_le_bytes(&bytes[1..5]),
            pressure_max: <u16>::from_le_bytes(&bytes[5..7]),
            x_start: <u16>::from_le_bytes(&bytes[7..9]),
            y_start: <u16>::from_le_bytes(&bytes[9..11]),
            x_end: <u16>::from_le_bytes(&bytes[11..13]),
            y_end: <u16>::from_le_bytes(&bytes[13..15]),
            age: <u32>::from_le_bytes(&bytes[15..19]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TouchGestureCallbackConfiguration {
    pub period: u32,
    pub value_has_to_change: bool,
}
impl FromByteSlice for TouchGestureCallbackConfiguration {
    fn bytes_expected() -> usize { 5 }
    fn from_le_bytes(bytes: &[u8]) -> TouchGestureCallbackConfiguration {
        TouchGestureCallbackConfiguration {
            period: <u32>::from_le_bytes(&bytes[0..4]),
            value_has_to_change: <bool>::from_le_bytes(&bytes[4..5]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TouchGestureEvent {
    pub gesture: u8,
    pub duration: u32,
    pub pressure_max: u16,
    pub x_start: u16,
    pub y_start: u16,
    pub x_end: u16,
    pub y_end: u16,
    pub age: u32,
}
impl FromByteSlice for TouchGestureEvent {
    fn bytes_expected() -> usize { 19 }
    fn from_le_bytes(bytes: &[u8]) -> TouchGestureEvent {
        TouchGestureEvent {
            gesture: <u8>::from_le_bytes(&bytes[0..1]),
            duration: <u32>::from_le_bytes(&bytes[1..5]),
            pressure_max: <u16>::from_le_bytes(&bytes[5..7]),
            x_start: <u16>::from_le_bytes(&bytes[7..9]),
            y_start: <u16>::from_le_bytes(&bytes[9..11]),
            x_end: <u16>::from_le_bytes(&bytes[11..13]),
            y_end: <u16>::from_le_bytes(&bytes[13..15]),
            age: <u32>::from_le_bytes(&bytes[15..19]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_bytes(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_bytes(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_bytes(&bytes[4..8]),
            error_count_frame: <u32>::from_le_bytes(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_bytes(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_bytes(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_bytes(&bytes[0..8]),
            connected_uid: <String>::from_le_bytes(&bytes[8..16]),
            position: <char>::from_le_bytes(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_bytes(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_bytes(&bytes[20..23]),
            device_identifier: <u16>::from_le_bytes(&bytes[23..25]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WritePixelsResult {}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ReadPixelsResult {}

/// 7.1cm (2.8") display with 128x64 pixel and touch screen
#[derive(Clone)]
pub struct Lcd128x64Bricklet {
    device: Device,
}
impl Lcd128x64Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 298;
    pub const DEVICE_DISPLAY_NAME: &'static str = "LCD 128x64 Bricklet";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new(uid: &str, ip_connection: &IpConnection) -> Lcd128x64Bricklet {
        let mut result = Lcd128x64Bricklet { device: Device::new([2, 0, 0], uid, ip_connection, 2) };
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::WritePixelsLowLevel) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::ReadPixelsLowLevel) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::ClearDisplay) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::SetDisplayConfiguration) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetDisplayConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::WriteLine) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::DrawBufferedFrame) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetTouchPosition) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::SetTouchPositionCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetTouchPositionCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetTouchGesture) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::SetTouchGestureCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetTouchGestureCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::SetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::SetWriteFirmwarePointer) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::WriteFirmware) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::SetStatusLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetStatusLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Lcd128x64BrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::lcd_128x64_bricklet::Lcd128x64Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::lcd_128x64_bricklet::Lcd128x64Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: Lcd128x64BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: Lcd128x64BrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// This receiver is triggered periodically with the period that is set by
    /// `Set Touch Position Receiver Configuration`. The parameters are the
    /// same as for `Get Touch Position`.
    pub fn get_touch_position_callback_receiver(&self) -> ConvertingCallbackReceiver<TouchPositionEvent> {
        self.device.get_callback_receiver(u8::from(Lcd128x64BrickletFunction::CallbackTouchPosition))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// `Set Touch Gesture Receiver Configuration`. The parameters are the
    /// same as for `Get Touch Gesture`.
    pub fn get_touch_gesture_callback_receiver(&self) -> ConvertingCallbackReceiver<TouchGestureEvent> {
        self.device.get_callback_receiver(u8::from(Lcd128x64BrickletFunction::CallbackTouchGesture))
    }

    /// Writes pixels to the specified window.
    ///
    /// The x-axis goes from 0 to 127 and the y-axis from 0 to 63. The pixels are written
    /// into the window line by line top to bottom and each line is written from left to
    /// right.
    ///
    /// If automatic draw is enabled (default) the pixels are directly written to
    /// the screen. Only pixels that have actually changed are updated on the screen,
    /// the rest stays the same.
    ///
    /// If automatic draw is disabled the pixels are written to an internal buffer and
    /// the buffer is transferred to the display only after `Draw Buffered Frame`
    /// is called. This can be used to avoid flicker when drawing a complex frame in
    /// multiple steps.
    ///
    /// Automatic draw can be configured with the `Set Display Configuration`
    /// function.
    pub fn write_pixels_low_level(
        &self,
        x_start: u8,
        y_start: u8,
        x_end: u8,
        y_end: u8,
        pixels_length: u16,
        pixels_chunk_offset: u16,
        pixels_chunk_data: [bool; 448],
    ) -> ConvertingReceiver<WritePixelsLowLevel> {
        let mut payload = vec![0; 64];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(x_start));
        payload[1..2].copy_from_slice(&<u8>::to_le_bytes(y_start));
        payload[2..3].copy_from_slice(&<u8>::to_le_bytes(x_end));
        payload[3..4].copy_from_slice(&<u8>::to_le_bytes(y_end));
        payload[4..6].copy_from_slice(&<u16>::to_le_bytes(pixels_length));
        payload[6..8].copy_from_slice(&<u16>::to_le_bytes(pixels_chunk_offset));
        payload[8..64].copy_from_slice(&<[bool; 448]>::to_le_bytes(pixels_chunk_data));

        self.device.set(u8::from(Lcd128x64BrickletFunction::WritePixelsLowLevel), payload)
    }

    /// Writes pixels to the specified window.
    ///
    /// The x-axis goes from 0 to 127 and the y-axis from 0 to 63. The pixels are written
    /// into the window line by line top to bottom and each line is written from left to
    /// right.
    ///
    /// If automatic draw is enabled (default) the pixels are directly written to
    /// the screen. Only pixels that have actually changed are updated on the screen,
    /// the rest stays the same.
    ///
    /// If automatic draw is disabled the pixels are written to an internal buffer and
    /// the buffer is transferred to the display only after `Draw Buffered Frame`
    /// is called. This can be used to avoid flicker when drawing a complex frame in
    /// multiple steps.
    ///
    /// Automatic draw can be configured with the `Set Display Configuration`
    /// function.
    pub fn write_pixels(&self, x_start: u8, y_start: u8, x_end: u8, y_end: u8, pixels: &[bool]) -> Result<(), BrickletRecvTimeoutError> {
        let _ll_result = self.device.set_high_level(0, pixels, 65535, 448, &mut |length: usize, chunk_offset: usize, chunk: &[bool]| {
            let chunk_length = chunk.len() as u16;
            let mut chunk_array = [<bool>::default(); 448];
            chunk_array[0..chunk_length as usize].copy_from_slice(&chunk);

            let result =
                self.write_pixels_low_level(x_start, y_start, x_end, y_end, length as u16, chunk_offset as u16, chunk_array).recv();
            if let Err(BrickletRecvTimeoutError::SuccessButResponseExpectedIsDisabled) = result {
                Ok(Default::default())
            } else {
                result
            }
        })?;
        Ok(())
    }

    /// Reads pixels from the specified window.
    ///
    /// The x-axis goes from 0 to 127 and the y-axis from 0 to 63. The pixels are read
    /// from the window line by line top to bottom and each line is read from left to
    /// right.
    ///
    /// If automatic draw is enabled (default) the pixels that are read are always the
    /// same that are shown on the display.
    ///
    /// If automatic draw is disabled the pixels are read from the internal buffer
    /// (see `Draw Buffered Frame`).
    ///
    /// Automatic draw can be configured with the `Set Display Configuration`
    /// function.
    pub fn read_pixels_low_level(&self, x_start: u8, y_start: u8, x_end: u8, y_end: u8) -> ConvertingReceiver<ReadPixelsLowLevel> {
        let mut payload = vec![0; 4];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(x_start));
        payload[1..2].copy_from_slice(&<u8>::to_le_bytes(y_start));
        payload[2..3].copy_from_slice(&<u8>::to_le_bytes(x_end));
        payload[3..4].copy_from_slice(&<u8>::to_le_bytes(y_end));

        self.device.get(u8::from(Lcd128x64BrickletFunction::ReadPixelsLowLevel), payload)
    }

    /// Reads pixels from the specified window.
    ///
    /// The x-axis goes from 0 to 127 and the y-axis from 0 to 63. The pixels are read
    /// from the window line by line top to bottom and each line is read from left to
    /// right.
    ///
    /// If automatic draw is enabled (default) the pixels that are read are always the
    /// same that are shown on the display.
    ///
    /// If automatic draw is disabled the pixels are read from the internal buffer
    /// (see `Draw Buffered Frame`).
    ///
    /// Automatic draw can be configured with the `Set Display Configuration`
    /// function.
    pub fn read_pixels(&self, x_start: u8, y_start: u8, x_end: u8, y_end: u8) -> Result<Vec<bool>, BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(1, &mut || self.read_pixels_low_level(x_start, y_start, x_end, y_end).recv())?;
        Ok(ll_result.0)
    }

    /// Clears the complete content of the display.
    pub fn clear_display(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(Lcd128x64BrickletFunction::ClearDisplay), payload)
    }

    /// Sets the configuration of the display.
    ///
    /// You can set a contrast value from 0 to 63, a backlight intensity value
    /// from 0 to 100 and you can invert the color (white/black) of the display.
    ///
    /// If automatic draw is set to *true*, the display is automatically updated with every
    /// call of `Write Pixels` and `Write Line`. If it is set to false, the
    /// changes are written into an internal buffer and only shown on the display after
    /// a call of `Draw Buffered Frame`.
    ///
    /// The default values are contrast 14, backlight intensity 100, inverting off
    /// and automatic draw on.
    pub fn set_display_configuration(&self, contrast: u8, backlight: u8, invert: bool, automatic_draw: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(contrast));
        payload[1..2].copy_from_slice(&<u8>::to_le_bytes(backlight));
        payload[2..3].copy_from_slice(&<bool>::to_le_bytes(invert));
        payload[3..4].copy_from_slice(&<bool>::to_le_bytes(automatic_draw));

        self.device.set(u8::from(Lcd128x64BrickletFunction::SetDisplayConfiguration), payload)
    }

    /// Returns the configuration as set by `Set Display Configuration`.
    pub fn get_display_configuration(&self) -> ConvertingReceiver<DisplayConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetDisplayConfiguration), payload)
    }

    /// Writes text to a specific line (0 to 7) with a specific position
    /// (0 to 21). The text can have a maximum of 22 characters.
    ///
    /// For example: (1, 10, Hello) will write *Hello* in the middle of the
    /// second line of the display.
    ///
    /// The display uses a special 5x7 pixel charset. You can view the characters
    /// of the charset in Brick Viewer.
    pub fn write_line(&self, line: u8, position: u8, text: String) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 24];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(line));
        payload[1..2].copy_from_slice(&<u8>::to_le_bytes(position));
        match <String>::try_to_le_bytes(text, 22) {
            Err(e) => {
                let (tx, rx) = std::sync::mpsc::channel::<Result<Vec<u8>, BrickletError>>();
                let _ = tx.send(Err(e));
                return ConvertingReceiver::new(rx, std::time::Duration::new(1, 0));
            }
            Ok(bytes) => payload[2..24].copy_from_slice(&bytes),
        }

        self.device.set(u8::from(Lcd128x64BrickletFunction::WriteLine), payload)
    }

    /// Draws the currently buffered frame. Normally each call of `Write Pixels` and
    /// `Write Line` draws directly onto the display. If you turn automatic draw off
    /// (`Set Display Configuration`), the data is written in an internal buffer and
    /// only transferred to the display by calling this function. This can be used to
    /// avoid flicker when drawing a complex frame in multiple steps.
    ///
    /// Set the `force complete redraw` to *true* to redraw the whole display
    /// instead of only the changed parts. Normally it should not be necessary to set this to
    /// *true*. It may only become necessary in case of stuck pixels because of errors.
    pub fn draw_buffered_frame(&self, force_complete_redraw: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<bool>::to_le_bytes(force_complete_redraw));

        self.device.set(u8::from(Lcd128x64BrickletFunction::DrawBufferedFrame), payload)
    }

    /// Returns the last valid touch position:
    ///
    /// * Pressure: Amount of pressure applied by the user (0-300)
    /// * X: Touch position on x-axis (0-127)
    /// * Y: Touch position on y-axis (0-63)
    /// * Age: Age of touch press in ms (how long ago it was)
    pub fn get_touch_position(&self) -> ConvertingReceiver<TouchPosition> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetTouchPosition), payload)
    }

    /// The period in ms is the period with which the [`get_touch_position_callback_receiver`] receiver
    /// is triggered periodically. A value of 0 turns the receiver off.
    ///
    /// If the `value has to change`-parameter is set to true, the receiver is only
    /// triggered after the value has changed. If the value didn't change within the
    /// period, the receiver is triggered immediately on change.
    ///
    /// If it is set to false, the receiver is continuously triggered with the period,
    /// independent of the value.
    ///
    /// The default value is (0, false).
    ///
    /// [`get_touch_position_callback_receiver`]: #method.get_touch_position_callback_receiver
    pub fn set_touch_position_callback_configuration(&self, period: u32, value_has_to_change: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..4].copy_from_slice(&<u32>::to_le_bytes(period));
        payload[4..5].copy_from_slice(&<bool>::to_le_bytes(value_has_to_change));

        self.device.set(u8::from(Lcd128x64BrickletFunction::SetTouchPositionCallbackConfiguration), payload)
    }

    /// Returns the receiver configuration as set by
    /// `Set Touch Position Receiver Configuration`.
    pub fn get_touch_position_callback_configuration(&self) -> ConvertingReceiver<TouchPositionCallbackConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetTouchPositionCallbackConfiguration), payload)
    }

    /// Returns one of four touch gestures that can be automatically detected by the Bricklet.
    ///
    /// The gestures are swipes from left to right, right to left, top to bottom and bottom to top.
    ///
    /// Additionally to the gestures a vector with a start and end position of the gesture is
    /// provided. You can use this vector do determine a more exact location of the gesture (e.g.
    /// the swipe from top to bottom was on the left or right part of the screen).
    ///
    /// The age parameter corresponds to the age of gesture in ms (how long ago it was).
    ///
    /// Associated constants:
    /// * LCD_128X64BRICKLET_GESTURE_LEFT_TO_RIGHT
    ///	* LCD_128X64BRICKLET_GESTURE_RIGHT_TO_LEFT
    ///	* LCD_128X64BRICKLET_GESTURE_TOP_TO_BOTTOM
    ///	* LCD_128X64BRICKLET_GESTURE_BOTTOM_TO_TOP
    pub fn get_touch_gesture(&self) -> ConvertingReceiver<TouchGesture> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetTouchGesture), payload)
    }

    /// The period in ms is the period with which the [`get_touch_gesture_callback_receiver`] receiver
    /// is triggered periodically. A value of 0 turns the receiver off.
    ///
    /// If the `value has to change`-parameter is set to true, the receiver is only
    /// triggered after the value has changed. If the value didn't change within the
    /// period, the receiver is triggered immediately on change.
    ///
    /// If it is set to false, the receiver is continuously triggered with the period,
    /// independent of the value.
    ///
    /// The default value is (0, false).
    ///
    /// [`get_touch_gesture_callback_receiver`]: #method.get_touch_gesture_callback_receiver
    pub fn set_touch_gesture_callback_configuration(&self, period: u32, value_has_to_change: bool) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..4].copy_from_slice(&<u32>::to_le_bytes(period));
        payload[4..5].copy_from_slice(&<bool>::to_le_bytes(value_has_to_change));

        self.device.set(u8::from(Lcd128x64BrickletFunction::SetTouchGestureCallbackConfiguration), payload)
    }

    /// Returns the receiver configuration as set by
    /// `Set Touch Gesture Receiver Configuration`.
    pub fn get_touch_gesture_callback_configuration(&self) -> ConvertingReceiver<TouchGestureCallbackConfiguration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetTouchGestureCallbackConfiguration), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * LCD_128X64BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_STATUS_OK
    ///	* LCD_128X64BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* LCD_128X64BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* LCD_128X64BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(mode));

        self.device.get(u8::from(Lcd128x64BrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see `Set Bootloader Mode`.
    ///
    /// Associated constants:
    /// * LCD_128X64BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* LCD_128X64BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for `Write Firmware`. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_bytes(pointer));

        self.device.set(u8::from(Lcd128x64BrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// `Set Write Firmware Pointer` before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_bytes(data));

        self.device.get(u8::from(Lcd128x64BrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * LCD_128X64BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* LCD_128X64BRICKLET_STATUS_LED_CONFIG_ON
    ///	* LCD_128X64BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* LCD_128X64BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_bytes(config));

        self.device.set(u8::from(Lcd128x64BrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by `Set Status LED Config`
    ///
    /// Associated constants:
    /// * LCD_128X64BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* LCD_128X64BRICKLET_STATUS_LED_CONFIG_ON
    ///	* LCD_128X64BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* LCD_128X64BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature in °C as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(Lcd128x64BrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_bytes(uid));

        self.device.set(u8::from(Lcd128x64BrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c' or 'd'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(Lcd128x64BrickletFunction::GetIdentity), payload)
    }
}