1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
/* ***********************************************************
 * This file was automatically generated on 2019-11-25.      *
 *                                                           *
 * Rust Bindings Version 2.0.13                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Full fledged AHRS with 9 degrees of freedom.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricks/IMU_Brick_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum ImuBrickFunction {
    GetAcceleration,
    GetMagneticField,
    GetAngularVelocity,
    GetAllData,
    GetOrientation,
    GetQuaternion,
    GetImuTemperature,
    LedsOn,
    LedsOff,
    AreLedsOn,
    SetAccelerationRange,
    GetAccelerationRange,
    SetMagnetometerRange,
    GetMagnetometerRange,
    SetConvergenceSpeed,
    GetConvergenceSpeed,
    SetCalibration,
    GetCalibration,
    SetAccelerationPeriod,
    GetAccelerationPeriod,
    SetMagneticFieldPeriod,
    GetMagneticFieldPeriod,
    SetAngularVelocityPeriod,
    GetAngularVelocityPeriod,
    SetAllDataPeriod,
    GetAllDataPeriod,
    SetOrientationPeriod,
    GetOrientationPeriod,
    SetQuaternionPeriod,
    GetQuaternionPeriod,
    OrientationCalculationOn,
    OrientationCalculationOff,
    IsOrientationCalculationOn,
    SetSpitfpBaudrateConfig,
    GetSpitfpBaudrateConfig,
    GetSendTimeoutCount,
    SetSpitfpBaudrate,
    GetSpitfpBaudrate,
    GetSpitfpErrorCount,
    EnableStatusLed,
    DisableStatusLed,
    IsStatusLedEnabled,
    GetProtocol1BrickletName,
    GetChipTemperature,
    Reset,
    GetIdentity,
    CallbackAcceleration,
    CallbackMagneticField,
    CallbackAngularVelocity,
    CallbackAllData,
    CallbackOrientation,
    CallbackQuaternion,
}
impl From<ImuBrickFunction> for u8 {
    fn from(fun: ImuBrickFunction) -> Self {
        match fun {
            ImuBrickFunction::GetAcceleration => 1,
            ImuBrickFunction::GetMagneticField => 2,
            ImuBrickFunction::GetAngularVelocity => 3,
            ImuBrickFunction::GetAllData => 4,
            ImuBrickFunction::GetOrientation => 5,
            ImuBrickFunction::GetQuaternion => 6,
            ImuBrickFunction::GetImuTemperature => 7,
            ImuBrickFunction::LedsOn => 8,
            ImuBrickFunction::LedsOff => 9,
            ImuBrickFunction::AreLedsOn => 10,
            ImuBrickFunction::SetAccelerationRange => 11,
            ImuBrickFunction::GetAccelerationRange => 12,
            ImuBrickFunction::SetMagnetometerRange => 13,
            ImuBrickFunction::GetMagnetometerRange => 14,
            ImuBrickFunction::SetConvergenceSpeed => 15,
            ImuBrickFunction::GetConvergenceSpeed => 16,
            ImuBrickFunction::SetCalibration => 17,
            ImuBrickFunction::GetCalibration => 18,
            ImuBrickFunction::SetAccelerationPeriod => 19,
            ImuBrickFunction::GetAccelerationPeriod => 20,
            ImuBrickFunction::SetMagneticFieldPeriod => 21,
            ImuBrickFunction::GetMagneticFieldPeriod => 22,
            ImuBrickFunction::SetAngularVelocityPeriod => 23,
            ImuBrickFunction::GetAngularVelocityPeriod => 24,
            ImuBrickFunction::SetAllDataPeriod => 25,
            ImuBrickFunction::GetAllDataPeriod => 26,
            ImuBrickFunction::SetOrientationPeriod => 27,
            ImuBrickFunction::GetOrientationPeriod => 28,
            ImuBrickFunction::SetQuaternionPeriod => 29,
            ImuBrickFunction::GetQuaternionPeriod => 30,
            ImuBrickFunction::OrientationCalculationOn => 37,
            ImuBrickFunction::OrientationCalculationOff => 38,
            ImuBrickFunction::IsOrientationCalculationOn => 39,
            ImuBrickFunction::SetSpitfpBaudrateConfig => 231,
            ImuBrickFunction::GetSpitfpBaudrateConfig => 232,
            ImuBrickFunction::GetSendTimeoutCount => 233,
            ImuBrickFunction::SetSpitfpBaudrate => 234,
            ImuBrickFunction::GetSpitfpBaudrate => 235,
            ImuBrickFunction::GetSpitfpErrorCount => 237,
            ImuBrickFunction::EnableStatusLed => 238,
            ImuBrickFunction::DisableStatusLed => 239,
            ImuBrickFunction::IsStatusLedEnabled => 240,
            ImuBrickFunction::GetProtocol1BrickletName => 241,
            ImuBrickFunction::GetChipTemperature => 242,
            ImuBrickFunction::Reset => 243,
            ImuBrickFunction::GetIdentity => 255,
            ImuBrickFunction::CallbackAcceleration => 31,
            ImuBrickFunction::CallbackMagneticField => 32,
            ImuBrickFunction::CallbackAngularVelocity => 33,
            ImuBrickFunction::CallbackAllData => 34,
            ImuBrickFunction::CallbackOrientation => 35,
            ImuBrickFunction::CallbackQuaternion => 36,
        }
    }
}
pub const IMU_BRICK_CALIBRATION_TYPE_ACCELEROMETER_GAIN: u8 = 0;
pub const IMU_BRICK_CALIBRATION_TYPE_ACCELEROMETER_BIAS: u8 = 1;
pub const IMU_BRICK_CALIBRATION_TYPE_MAGNETOMETER_GAIN: u8 = 2;
pub const IMU_BRICK_CALIBRATION_TYPE_MAGNETOMETER_BIAS: u8 = 3;
pub const IMU_BRICK_CALIBRATION_TYPE_GYROSCOPE_GAIN: u8 = 4;
pub const IMU_BRICK_CALIBRATION_TYPE_GYROSCOPE_BIAS: u8 = 5;
pub const IMU_BRICK_COMMUNICATION_METHOD_NONE: u8 = 0;
pub const IMU_BRICK_COMMUNICATION_METHOD_USB: u8 = 1;
pub const IMU_BRICK_COMMUNICATION_METHOD_SPI_STACK: u8 = 2;
pub const IMU_BRICK_COMMUNICATION_METHOD_CHIBI: u8 = 3;
pub const IMU_BRICK_COMMUNICATION_METHOD_RS485: u8 = 4;
pub const IMU_BRICK_COMMUNICATION_METHOD_WIFI: u8 = 5;
pub const IMU_BRICK_COMMUNICATION_METHOD_ETHERNET: u8 = 6;
pub const IMU_BRICK_COMMUNICATION_METHOD_WIFI_V2: u8 = 7;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Acceleration {
    pub x: i16,
    pub y: i16,
    pub z: i16,
}
impl FromByteSlice for Acceleration {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> Acceleration {
        Acceleration {
            x: <i16>::from_le_byte_slice(&bytes[0..2]),
            y: <i16>::from_le_byte_slice(&bytes[2..4]),
            z: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MagneticField {
    pub x: i16,
    pub y: i16,
    pub z: i16,
}
impl FromByteSlice for MagneticField {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> MagneticField {
        MagneticField {
            x: <i16>::from_le_byte_slice(&bytes[0..2]),
            y: <i16>::from_le_byte_slice(&bytes[2..4]),
            z: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AngularVelocity {
    pub x: i16,
    pub y: i16,
    pub z: i16,
}
impl FromByteSlice for AngularVelocity {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> AngularVelocity {
        AngularVelocity {
            x: <i16>::from_le_byte_slice(&bytes[0..2]),
            y: <i16>::from_le_byte_slice(&bytes[2..4]),
            z: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AllData {
    pub acc_x: i16,
    pub acc_y: i16,
    pub acc_z: i16,
    pub mag_x: i16,
    pub mag_y: i16,
    pub mag_z: i16,
    pub ang_x: i16,
    pub ang_y: i16,
    pub ang_z: i16,
    pub temperature: i16,
}
impl FromByteSlice for AllData {
    fn bytes_expected() -> usize { 20 }
    fn from_le_byte_slice(bytes: &[u8]) -> AllData {
        AllData {
            acc_x: <i16>::from_le_byte_slice(&bytes[0..2]),
            acc_y: <i16>::from_le_byte_slice(&bytes[2..4]),
            acc_z: <i16>::from_le_byte_slice(&bytes[4..6]),
            mag_x: <i16>::from_le_byte_slice(&bytes[6..8]),
            mag_y: <i16>::from_le_byte_slice(&bytes[8..10]),
            mag_z: <i16>::from_le_byte_slice(&bytes[10..12]),
            ang_x: <i16>::from_le_byte_slice(&bytes[12..14]),
            ang_y: <i16>::from_le_byte_slice(&bytes[14..16]),
            ang_z: <i16>::from_le_byte_slice(&bytes[16..18]),
            temperature: <i16>::from_le_byte_slice(&bytes[18..20]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Orientation {
    pub roll: i16,
    pub pitch: i16,
    pub yaw: i16,
}
impl FromByteSlice for Orientation {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> Orientation {
        Orientation {
            roll: <i16>::from_le_byte_slice(&bytes[0..2]),
            pitch: <i16>::from_le_byte_slice(&bytes[2..4]),
            yaw: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct Quaternion {
    pub x: f32,
    pub y: f32,
    pub z: f32,
    pub w: f32,
}
impl FromByteSlice for Quaternion {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> Quaternion {
        Quaternion {
            x: <f32>::from_le_byte_slice(&bytes[0..4]),
            y: <f32>::from_le_byte_slice(&bytes[4..8]),
            z: <f32>::from_le_byte_slice(&bytes[8..12]),
            w: <f32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AccelerationEvent {
    pub x: i16,
    pub y: i16,
    pub z: i16,
}
impl FromByteSlice for AccelerationEvent {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> AccelerationEvent {
        AccelerationEvent {
            x: <i16>::from_le_byte_slice(&bytes[0..2]),
            y: <i16>::from_le_byte_slice(&bytes[2..4]),
            z: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MagneticFieldEvent {
    pub x: i16,
    pub y: i16,
    pub z: i16,
}
impl FromByteSlice for MagneticFieldEvent {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> MagneticFieldEvent {
        MagneticFieldEvent {
            x: <i16>::from_le_byte_slice(&bytes[0..2]),
            y: <i16>::from_le_byte_slice(&bytes[2..4]),
            z: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AngularVelocityEvent {
    pub x: i16,
    pub y: i16,
    pub z: i16,
}
impl FromByteSlice for AngularVelocityEvent {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> AngularVelocityEvent {
        AngularVelocityEvent {
            x: <i16>::from_le_byte_slice(&bytes[0..2]),
            y: <i16>::from_le_byte_slice(&bytes[2..4]),
            z: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AllDataEvent {
    pub acc_x: i16,
    pub acc_y: i16,
    pub acc_z: i16,
    pub mag_x: i16,
    pub mag_y: i16,
    pub mag_z: i16,
    pub ang_x: i16,
    pub ang_y: i16,
    pub ang_z: i16,
    pub temperature: i16,
}
impl FromByteSlice for AllDataEvent {
    fn bytes_expected() -> usize { 20 }
    fn from_le_byte_slice(bytes: &[u8]) -> AllDataEvent {
        AllDataEvent {
            acc_x: <i16>::from_le_byte_slice(&bytes[0..2]),
            acc_y: <i16>::from_le_byte_slice(&bytes[2..4]),
            acc_z: <i16>::from_le_byte_slice(&bytes[4..6]),
            mag_x: <i16>::from_le_byte_slice(&bytes[6..8]),
            mag_y: <i16>::from_le_byte_slice(&bytes[8..10]),
            mag_z: <i16>::from_le_byte_slice(&bytes[10..12]),
            ang_x: <i16>::from_le_byte_slice(&bytes[12..14]),
            ang_y: <i16>::from_le_byte_slice(&bytes[14..16]),
            ang_z: <i16>::from_le_byte_slice(&bytes[16..18]),
            temperature: <i16>::from_le_byte_slice(&bytes[18..20]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct OrientationEvent {
    pub roll: i16,
    pub pitch: i16,
    pub yaw: i16,
}
impl FromByteSlice for OrientationEvent {
    fn bytes_expected() -> usize { 6 }
    fn from_le_byte_slice(bytes: &[u8]) -> OrientationEvent {
        OrientationEvent {
            roll: <i16>::from_le_byte_slice(&bytes[0..2]),
            pitch: <i16>::from_le_byte_slice(&bytes[2..4]),
            yaw: <i16>::from_le_byte_slice(&bytes[4..6]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct QuaternionEvent {
    pub x: f32,
    pub y: f32,
    pub z: f32,
    pub w: f32,
}
impl FromByteSlice for QuaternionEvent {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> QuaternionEvent {
        QuaternionEvent {
            x: <f32>::from_le_byte_slice(&bytes[0..4]),
            y: <f32>::from_le_byte_slice(&bytes[4..8]),
            z: <f32>::from_le_byte_slice(&bytes[8..12]),
            w: <f32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpBaudrateConfig {
    pub enable_dynamic_baudrate: bool,
    pub minimum_dynamic_baudrate: u32,
}
impl FromByteSlice for SpitfpBaudrateConfig {
    fn bytes_expected() -> usize { 5 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpBaudrateConfig {
        SpitfpBaudrateConfig {
            enable_dynamic_baudrate: <bool>::from_le_byte_slice(&bytes[0..1]),
            minimum_dynamic_baudrate: <u32>::from_le_byte_slice(&bytes[1..5]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone)]
pub struct Protocol1BrickletName {
    pub protocol_version: u8,
    pub firmware_version: [u8; 3],
    pub name: String,
}
impl FromByteSlice for Protocol1BrickletName {
    fn bytes_expected() -> usize { 44 }
    fn from_le_byte_slice(bytes: &[u8]) -> Protocol1BrickletName {
        Protocol1BrickletName {
            protocol_version: <u8>::from_le_byte_slice(&bytes[0..1]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[1..4]),
            name: <String>::from_le_byte_slice(&bytes[4..44]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Full fledged AHRS with 9 degrees of freedom
#[derive(Clone)]
pub struct ImuBrick {
    device: Device,
}
impl ImuBrick {
    pub const DEVICE_IDENTIFIER: u16 = 16;
    pub const DEVICE_DISPLAY_NAME: &'static str = "IMU Brick";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> ImuBrick {
        let mut result = ImuBrick { device: Device::new([2, 0, 4], uid, req_sender, 0) };
        result.device.response_expected[u8::from(ImuBrickFunction::GetAcceleration) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetMagneticField) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetAngularVelocity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetAllData) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetOrientation) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetQuaternion) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetImuTemperature) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::LedsOn) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::LedsOff) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::AreLedsOn) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetAccelerationRange) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetAccelerationRange) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetMagnetometerRange) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetMagnetometerRange) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetConvergenceSpeed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetConvergenceSpeed) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetCalibration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetCalibration) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetAccelerationPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ImuBrickFunction::GetAccelerationPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetMagneticFieldPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ImuBrickFunction::GetMagneticFieldPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetAngularVelocityPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ImuBrickFunction::GetAngularVelocityPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetAllDataPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ImuBrickFunction::GetAllDataPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetOrientationPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ImuBrickFunction::GetOrientationPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetQuaternionPeriod) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ImuBrickFunction::GetQuaternionPeriod) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::OrientationCalculationOn) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::OrientationCalculationOff) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::IsOrientationCalculationOn) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetSpitfpBaudrateConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetSpitfpBaudrateConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetSendTimeoutCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::SetSpitfpBaudrate) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetSpitfpBaudrate) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetSpitfpErrorCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::EnableStatusLed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::DisableStatusLed) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::IsStatusLedEnabled) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetProtocol1BrickletName) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::GetChipTemperature) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ImuBrickFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ImuBrickFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::imu_brick::ImuBrick::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::imu_brick::ImuBrick::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: ImuBrickFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(&mut self, fun: ImuBrickFunction, response_expected: bool) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_acceleration_period`]. The parameters are the acceleration
    /// for the x, y and z axis.
    ///
    /// [`set_acceleration_period`]: #method.set_acceleration_period
    pub fn get_acceleration_callback_receiver(&self) -> ConvertingCallbackReceiver<AccelerationEvent> {
        self.device.get_callback_receiver(u8::from(ImuBrickFunction::CallbackAcceleration))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_magnetic_field_period`]. The parameters are the magnetic
    /// field for the x, y and z axis.
    ///
    /// [`set_magnetic_field_period`]: #method.set_magnetic_field_period
    pub fn get_magnetic_field_callback_receiver(&self) -> ConvertingCallbackReceiver<MagneticFieldEvent> {
        self.device.get_callback_receiver(u8::from(ImuBrickFunction::CallbackMagneticField))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_angular_velocity_period`]. The parameters are the angular
    /// velocity for the x, y and z axis.
    ///
    /// [`set_angular_velocity_period`]: #method.set_angular_velocity_period
    pub fn get_angular_velocity_callback_receiver(&self) -> ConvertingCallbackReceiver<AngularVelocityEvent> {
        self.device.get_callback_receiver(u8::from(ImuBrickFunction::CallbackAngularVelocity))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_all_data_period`]. The parameters are the acceleration,
    /// the magnetic field and the angular velocity for the x, y and z axis as
    /// well as the temperature of the IMU Brick.
    ///
    /// [`set_all_data_period`]: #method.set_all_data_period
    pub fn get_all_data_callback_receiver(&self) -> ConvertingCallbackReceiver<AllDataEvent> {
        self.device.get_callback_receiver(u8::from(ImuBrickFunction::CallbackAllData))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_orientation_period`]. The parameters are the orientation
    /// (roll, pitch and yaw) of the IMU Brick in Euler angles. See
    /// [`get_orientation`] for details.
    ///
    /// [`get_orientation`]: #method.get_orientation
    /// [`set_orientation_period`]: #method.set_orientation_period
    pub fn get_orientation_callback_receiver(&self) -> ConvertingCallbackReceiver<OrientationEvent> {
        self.device.get_callback_receiver(u8::from(ImuBrickFunction::CallbackOrientation))
    }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_quaternion_period`]. The parameters are the orientation
    /// (x, y, z, w) of the IMU Brick in quaternions. See [`get_quaternion`]
    /// for details.
    ///
    /// [`get_quaternion`]: #method.get_quaternion
    /// [`set_quaternion_period`]: #method.set_quaternion_period
    pub fn get_quaternion_callback_receiver(&self) -> ConvertingCallbackReceiver<QuaternionEvent> {
        self.device.get_callback_receiver(u8::from(ImuBrickFunction::CallbackQuaternion))
    }

    /// Returns the calibrated acceleration from the accelerometer for the
    /// x, y and z axis in g/1000 (1g = 9.80665m/s²).
    ///
    /// If you want to get the acceleration periodically, it is recommended
    /// to use the [`get_acceleration_callback_receiver`] receiver and set the period with
    /// [`set_acceleration_period`].
    ///
    /// [`set_acceleration_period`]: #method.set_acceleration_period
    /// [`get_acceleration_callback_receiver`]: #method.get_acceleration_callback_receiver
    pub fn get_acceleration(&self) -> ConvertingReceiver<Acceleration> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAcceleration), payload)
    }

    /// Returns the calibrated magnetic field from the magnetometer for the
    /// x, y and z axis in mG (Milligauss or Nanotesla).
    ///
    /// If you want to get the magnetic field periodically, it is recommended
    /// to use the [`get_magnetic_field_callback_receiver`] receiver and set the period with
    /// [`set_magnetic_field_period`].
    ///
    /// [`set_magnetic_field_period`]: #method.set_magnetic_field_period
    /// [`get_magnetic_field_callback_receiver`]: #method.get_magnetic_field_callback_receiver
    pub fn get_magnetic_field(&self) -> ConvertingReceiver<MagneticField> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetMagneticField), payload)
    }

    /// Returns the calibrated angular velocity from the gyroscope for the
    /// x, y and z axis in °/14.375s (you have to divide by 14.375 to
    /// get the value in °/s).
    ///
    /// If you want to get the angular velocity periodically, it is recommended
    /// to use the [`get_angular_velocity_callback_receiver`] receiver and set the period with
    /// [`set_angular_velocity_period`].
    ///
    /// [`set_angular_velocity_period`]: #method.set_angular_velocity_period
    /// [`get_angular_velocity_callback_receiver`]: #method.get_angular_velocity_callback_receiver
    pub fn get_angular_velocity(&self) -> ConvertingReceiver<AngularVelocity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAngularVelocity), payload)
    }

    /// Returns the data from [`get_acceleration`], [`get_magnetic_field`]
    /// and [`get_angular_velocity`] as well as the temperature of the IMU Brick.
    ///
    /// The temperature is given in °C/100.
    ///
    /// If you want to get the data periodically, it is recommended
    /// to use the [`get_all_data_callback_receiver`] receiver and set the period with
    /// [`set_all_data_period`].
    ///
    /// [`get_acceleration`]: #method.get_acceleration
    /// [`get_magnetic_field`]: #method.get_magnetic_field
    /// [`get_angular_velocity`]: #method.get_angular_velocity
    /// [`set_all_data_period`]: #method.set_all_data_period
    /// [`get_all_data_callback_receiver`]: #method.get_all_data_callback_receiver
    pub fn get_all_data(&self) -> ConvertingReceiver<AllData> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAllData), payload)
    }

    /// Returns the current orientation (roll, pitch, yaw) of the IMU Brick as Euler
    /// angles in one-hundredth degree. Note that Euler angles always experience a
    /// [gimbal lock](https://en.wikipedia.org/wiki/Gimbal_lock)__.
    ///
    /// We recommend that you use quaternions instead.
    ///
    /// The order to sequence in which the orientation values should be applied is
    /// roll, yaw, pitch.
    ///
    /// If you want to get the orientation periodically, it is recommended
    /// to use the [`get_orientation_callback_receiver`] receiver and set the period with
    /// [`set_orientation_period`].
    ///
    /// [`set_orientation_period`]: #method.set_orientation_period
    /// [`get_orientation_callback_receiver`]: #method.get_orientation_callback_receiver
    pub fn get_orientation(&self) -> ConvertingReceiver<Orientation> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetOrientation), payload)
    }

    /// Returns the current orientation (x, y, z, w) of the IMU as
    /// [quaternions](https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation)__.
    ///
    /// You can go from quaternions to Euler angles with the following formula::
    ///
    ///  xAngle = atan2(2*y*w - 2*x*z, 1 - 2*y*y - 2*z*z)
    ///  yAngle = atan2(2*x*w - 2*y*z, 1 - 2*x*x - 2*z*z)
    ///  zAngle =  asin(2*x*y + 2*z*w)
    ///
    /// This process is not reversible, because of the
    /// [gimbal lock](https://en.wikipedia.org/wiki/Gimbal_lock)__.
    ///
    /// It is also possible to calculate independent angles. You can calculate
    /// yaw, pitch and roll in a right-handed vehicle coordinate system according to
    /// DIN70000 with::
    ///
    ///  yaw   =  atan2(2*x*y + 2*w*z, w*w + x*x - y*y - z*z)
    ///  pitch = -asin(2*w*y - 2*x*z)
    ///  roll  = -atan2(2*y*z + 2*w*x, -w*w + x*x + y*y - z*z))
    ///
    /// Converting the quaternions to an OpenGL transformation matrix is
    /// possible with the following formula::
    ///
    ///  matrix = [[1 - 2*(y*y + z*z),     2*(x*y - w*z),     2*(x*z + w*y), 0],
    ///            [    2*(x*y + w*z), 1 - 2*(x*x + z*z),     2*(y*z - w*x), 0],
    ///            [    2*(x*z - w*y),     2*(y*z + w*x), 1 - 2*(x*x + y*y), 0],
    ///            [                0,                 0,                 0, 1]]
    ///
    /// If you want to get the quaternions periodically, it is recommended
    /// to use the [`get_quaternion_callback_receiver`] receiver and set the period with
    /// [`set_quaternion_period`].
    ///
    /// [`set_quaternion_period`]: #method.set_quaternion_period
    /// [`get_quaternion_callback_receiver`]: #method.get_quaternion_callback_receiver
    pub fn get_quaternion(&self) -> ConvertingReceiver<Quaternion> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetQuaternion), payload)
    }

    /// Returns the temperature of the IMU Brick. The temperature is given in
    /// °C/100.
    pub fn get_imu_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetImuTemperature), payload)
    }

    /// Turns the orientation and direction LEDs of the IMU Brick on.
    pub fn leds_on(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::LedsOn), payload)
    }

    /// Turns the orientation and direction LEDs of the IMU Brick off.
    pub fn leds_off(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::LedsOff), payload)
    }

    /// Returns *true* if the orientation and direction LEDs of the IMU Brick
    /// are on, *false* otherwise.
    pub fn are_leds_on(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::AreLedsOn), payload)
    }

    /// Not implemented yet.
    pub fn set_acceleration_range(&self, range: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(range));

        self.device.set(u8::from(ImuBrickFunction::SetAccelerationRange), payload)
    }

    /// Not implemented yet.
    pub fn get_acceleration_range(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAccelerationRange), payload)
    }

    /// Not implemented yet.
    pub fn set_magnetometer_range(&self, range: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(range));

        self.device.set(u8::from(ImuBrickFunction::SetMagnetometerRange), payload)
    }

    /// Not implemented yet.
    pub fn get_magnetometer_range(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetMagnetometerRange), payload)
    }

    /// Sets the convergence speed of the IMU Brick in °/s. The convergence speed
    /// determines how the different sensor measurements are fused.
    ///
    /// If the orientation of the IMU Brick is off by 10° and the convergence speed is
    /// set to 20°/s, it will take 0.5s until the orientation is corrected. However,
    /// if the correct orientation is reached and the convergence speed is too high,
    /// the orientation will fluctuate with the fluctuations of the accelerometer and
    /// the magnetometer.
    ///
    /// If you set the convergence speed to 0, practically only the gyroscope is used
    /// to calculate the orientation. This gives very smooth movements, but errors of the
    /// gyroscope will not be corrected. If you set the convergence speed to something
    /// above 500, practically only the magnetometer and the accelerometer are used to
    /// calculate the orientation. In this case the movements are abrupt and the values
    /// will fluctuate, but there won't be any errors that accumulate over time.
    ///
    /// In an application with high angular velocities, we recommend a high convergence
    /// speed, so the errors of the gyroscope can be corrected fast. In applications with
    /// only slow movements we recommend a low convergence speed. You can change the
    /// convergence speed on the fly. So it is possible (and recommended) to increase
    /// the convergence speed before an abrupt movement and decrease it afterwards
    /// again.
    ///
    /// You might want to play around with the convergence speed in the Brick Viewer to
    /// get a feeling for a good value for your application.
    ///
    /// The default value is 30.
    pub fn set_convergence_speed(&self, speed: u16) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 2];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(speed));

        self.device.set(u8::from(ImuBrickFunction::SetConvergenceSpeed), payload)
    }

    /// Returns the convergence speed as set by [`set_convergence_speed`].
    ///
    /// [`set_convergence_speed`]: #method.set_convergence_speed
    pub fn get_convergence_speed(&self) -> ConvertingReceiver<u16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetConvergenceSpeed), payload)
    }

    /// There are several different types that can be calibrated:
    ///
    ///  Type| Description| Values
    ///  --- | --- | ---
    ///  0|    Accelerometer Gain| ``[mul x| mul y| mul z| div x| div y| div z| 0| 0| 0| 0]``
    ///  1|    Accelerometer Bias| ``[bias x| bias y| bias z| 0| 0| 0| 0| 0| 0| 0]``
    ///  2|    Magnetometer Gain|  ``[mul x| mul y| mul z| div x| div y| div z| 0| 0| 0| 0]``
    ///  3|    Magnetometer Bias|  ``[bias x| bias y| bias z| 0| 0| 0| 0| 0| 0| 0]``
    ///  4|    Gyroscope Gain|     ``[mul x| mul y| mul z| div x| div y| div z| 0| 0| 0| 0]``
    ///  5|    Gyroscope Bias|     ``[bias xl| bias yl| bias zl| temp l| bias xh| bias yh| bias zh| temp h| 0| 0]``
    ///
    /// The calibration via gain and bias is done with the following formula::
    ///
    ///  new_value = (bias + orig_value) * gain_mul / gain_div
    ///
    /// If you really want to write your own calibration software, please keep
    /// in mind that you first have to undo the old calibration (set bias to 0 and
    /// gain to 1/1) and that you have to average over several thousand values
    /// to obtain a usable result in the end.
    ///
    /// The gyroscope bias is highly dependent on the temperature, so you have to
    /// calibrate the bias two times with different temperatures. The values ``xl``,
    /// ``yl``, ``zl`` and ``temp l`` are the bias for ``x``, ``y``, ``z`` and the
    /// corresponding temperature for a low temperature. The values ``xh``, ``yh``,
    /// ``zh`` and ``temp h`` are the same for a high temperatures. The temperature
    /// difference should be at least 5°C. If you have a temperature where the
    /// IMU Brick is mostly used, you should use this temperature for one of the
    /// sampling points.
    ///
    /// # Note
    ///  We highly recommend that you use the Brick Viewer to calibrate your
    ///  IMU Brick.
    ///
    /// Associated constants:
    /// * IMU_BRICK_CALIBRATION_TYPE_ACCELEROMETER_GAIN
    ///	* IMU_BRICK_CALIBRATION_TYPE_ACCELEROMETER_BIAS
    ///	* IMU_BRICK_CALIBRATION_TYPE_MAGNETOMETER_GAIN
    ///	* IMU_BRICK_CALIBRATION_TYPE_MAGNETOMETER_BIAS
    ///	* IMU_BRICK_CALIBRATION_TYPE_GYROSCOPE_GAIN
    ///	* IMU_BRICK_CALIBRATION_TYPE_GYROSCOPE_BIAS
    pub fn set_calibration(&self, typ: u8, data: [i16; 10]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 21];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(typ));
        payload[1..21].copy_from_slice(&<[i16; 10]>::to_le_byte_vec(data));

        self.device.set(u8::from(ImuBrickFunction::SetCalibration), payload)
    }

    /// Returns the calibration for a given type as set by [`set_calibration`].
    ///
    /// [`set_calibration`]: #method.set_calibration
    ///
    /// Associated constants:
    /// * IMU_BRICK_CALIBRATION_TYPE_ACCELEROMETER_GAIN
    ///	* IMU_BRICK_CALIBRATION_TYPE_ACCELEROMETER_BIAS
    ///	* IMU_BRICK_CALIBRATION_TYPE_MAGNETOMETER_GAIN
    ///	* IMU_BRICK_CALIBRATION_TYPE_MAGNETOMETER_BIAS
    ///	* IMU_BRICK_CALIBRATION_TYPE_GYROSCOPE_GAIN
    ///	* IMU_BRICK_CALIBRATION_TYPE_GYROSCOPE_BIAS
    pub fn get_calibration(&self, typ: u8) -> ConvertingReceiver<[i16; 10]> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(typ));

        self.device.get(u8::from(ImuBrickFunction::GetCalibration), payload)
    }

    /// Sets the period with which the [`get_acceleration_callback_receiver`] receiver is triggered
    /// periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_acceleration_callback_receiver`]: #method.get_acceleration_callback_receiver
    pub fn set_acceleration_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ImuBrickFunction::SetAccelerationPeriod), payload)
    }

    /// Returns the period as set by [`set_acceleration_period`].
    ///
    /// [`set_acceleration_period`]: #method.set_acceleration_period
    pub fn get_acceleration_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAccelerationPeriod), payload)
    }

    /// Sets the period with which the [`get_magnetic_field_callback_receiver`] receiver is
    /// triggered periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_magnetic_field_callback_receiver`]: #method.get_magnetic_field_callback_receiver
    pub fn set_magnetic_field_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ImuBrickFunction::SetMagneticFieldPeriod), payload)
    }

    /// Returns the period as set by [`set_magnetic_field_period`].
    ///
    /// [`set_magnetic_field_period`]: #method.set_magnetic_field_period
    pub fn get_magnetic_field_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetMagneticFieldPeriod), payload)
    }

    /// Sets the period with which the [`get_angular_velocity_callback_receiver`] receiver is
    /// triggered periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_angular_velocity_callback_receiver`]: #method.get_angular_velocity_callback_receiver
    pub fn set_angular_velocity_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ImuBrickFunction::SetAngularVelocityPeriod), payload)
    }

    /// Returns the period as set by [`set_angular_velocity_period`].
    ///
    /// [`set_angular_velocity_period`]: #method.set_angular_velocity_period
    pub fn get_angular_velocity_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAngularVelocityPeriod), payload)
    }

    /// Sets the period with which the [`get_all_data_callback_receiver`] receiver is triggered
    /// periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_all_data_callback_receiver`]: #method.get_all_data_callback_receiver
    pub fn set_all_data_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ImuBrickFunction::SetAllDataPeriod), payload)
    }

    /// Returns the period as set by [`set_all_data_period`].
    ///
    /// [`set_all_data_period`]: #method.set_all_data_period
    pub fn get_all_data_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetAllDataPeriod), payload)
    }

    /// Sets the period with which the [`get_orientation_callback_receiver`] receiver is triggered
    /// periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_orientation_callback_receiver`]: #method.get_orientation_callback_receiver
    pub fn set_orientation_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ImuBrickFunction::SetOrientationPeriod), payload)
    }

    /// Returns the period as set by [`set_orientation_period`].
    ///
    /// [`set_orientation_period`]: #method.set_orientation_period
    pub fn get_orientation_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetOrientationPeriod), payload)
    }

    /// Sets the period with which the [`get_quaternion_callback_receiver`] receiver is triggered
    /// periodically. A value of 0 turns the receiver off.
    ///
    /// [`get_quaternion_callback_receiver`]: #method.get_quaternion_callback_receiver
    pub fn set_quaternion_period(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(ImuBrickFunction::SetQuaternionPeriod), payload)
    }

    /// Returns the period as set by [`set_quaternion_period`].
    ///
    /// [`set_quaternion_period`]: #method.set_quaternion_period
    pub fn get_quaternion_period(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetQuaternionPeriod), payload)
    }

    /// Turns the orientation calculation of the IMU Brick on.
    ///
    /// As default the calculation is on.
    ///
    ///
    /// .. versionadded:: 2.0.2$nbsp;(Firmware)
    pub fn orientation_calculation_on(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::OrientationCalculationOn), payload)
    }

    /// Turns the orientation calculation of the IMU Brick off.
    ///
    /// If the calculation is off, [`get_orientation`] will return
    /// the last calculated value until the calculation is turned on again.
    ///
    /// The trigonometric functions that are needed to calculate the orientation
    /// are very expensive. We recommend to turn the orientation calculation
    /// off if the orientation is not needed, to free calculation time for the
    /// sensor fusion algorithm.
    ///
    /// As default the calculation is on.
    ///
    /// [`get_orientation`]: #method.get_orientation
    /// .. versionadded:: 2.0.2$nbsp;(Firmware)
    pub fn orientation_calculation_off(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::OrientationCalculationOff), payload)
    }

    /// Returns *true* if the orientation calculation of the IMU Brick
    /// is on, *false* otherwise.
    ///
    ///
    /// .. versionadded:: 2.0.2$nbsp;(Firmware)
    pub fn is_orientation_calculation_on(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::IsOrientationCalculationOn), payload)
    }

    /// The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is
    /// enabled, the Brick will try to adapt the baudrate for the communication
    /// between Bricks and Bricklets according to the amount of data that is transferred.
    ///
    /// The baudrate will be increased exponentially if lots of data is send/received and
    /// decreased linearly if little data is send/received.
    ///
    /// This lowers the baudrate in applications where little data is transferred (e.g.
    /// a weather station) and increases the robustness. If there is lots of data to transfer
    /// (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.
    ///
    /// In cases where some data has to transferred as fast as possible every few seconds
    /// (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn
    /// the dynamic baudrate off to get the highest possible performance.
    ///
    /// The maximum value of the baudrate can be set per port with the function
    /// [`set_spitfp_baudrate`]. If the dynamic baudrate is disabled, the baudrate
    /// as set by [`set_spitfp_baudrate`] will be used statically.
    ///
    /// The minimum dynamic baudrate has a value range of 400000 to 2000000 baud.
    ///
    /// By default dynamic baudrate is enabled and the minimum dynamic baudrate is 400000.
    ///
    /// [`set_spitfp_baudrate`]: #method.set_spitfp_baudrate
    /// .. versionadded:: 2.3.5$nbsp;(Firmware)
    pub fn set_spitfp_baudrate_config(&self, enable_dynamic_baudrate: bool, minimum_dynamic_baudrate: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..1].copy_from_slice(&<bool>::to_le_byte_vec(enable_dynamic_baudrate));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(minimum_dynamic_baudrate));

        self.device.set(u8::from(ImuBrickFunction::SetSpitfpBaudrateConfig), payload)
    }

    /// Returns the baudrate config, see [`set_spitfp_baudrate_config`].
    ///
    /// [`set_spitfp_baudrate_config`]: #method.set_spitfp_baudrate_config
    /// .. versionadded:: 2.3.5$nbsp;(Firmware)
    pub fn get_spitfp_baudrate_config(&self) -> ConvertingReceiver<SpitfpBaudrateConfig> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetSpitfpBaudrateConfig), payload)
    }

    /// Returns the timeout count for the different communication methods.
    ///
    /// The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.
    ///
    /// This function is mostly used for debugging during development, in normal operation
    /// the counters should nearly always stay at 0.
    ///
    ///
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    ///
    /// Associated constants:
    /// * IMU_BRICK_COMMUNICATION_METHOD_NONE
    ///	* IMU_BRICK_COMMUNICATION_METHOD_USB
    ///	* IMU_BRICK_COMMUNICATION_METHOD_SPI_STACK
    ///	* IMU_BRICK_COMMUNICATION_METHOD_CHIBI
    ///	* IMU_BRICK_COMMUNICATION_METHOD_RS485
    ///	* IMU_BRICK_COMMUNICATION_METHOD_WIFI
    ///	* IMU_BRICK_COMMUNICATION_METHOD_ETHERNET
    ///	* IMU_BRICK_COMMUNICATION_METHOD_WIFI_V2
    pub fn get_send_timeout_count(&self, communication_method: u8) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(communication_method));

        self.device.get(u8::from(ImuBrickFunction::GetSendTimeoutCount), payload)
    }

    /// Sets the baudrate for a specific Bricklet port ('a' - 'd'). The
    /// baudrate can be in the range 400000 to 2000000.
    ///
    /// If you want to increase the throughput of Bricklets you can increase
    /// the baudrate. If you get a high error count because of high
    /// interference (see [`get_spitfp_error_count`]) you can decrease the
    /// baudrate.
    ///
    /// If the dynamic baudrate feature is enabled, the baudrate set by this
    /// function corresponds to the maximum baudrate (see [`set_spitfp_baudrate_config`]).
    ///
    /// Regulatory testing is done with the default baudrate. If CE compatibility
    /// or similar is necessary in you applications we recommend to not change
    /// the baudrate.
    ///
    /// The default baudrate for all ports is 1400000.
    ///
    /// [`set_spitfp_baudrate_config`]: #method.set_spitfp_baudrate_config
    /// [`get_spitfp_error_count`]: #method.get_spitfp_error_count
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    pub fn set_spitfp_baudrate(&self, bricklet_port: char, baudrate: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 5];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));
        payload[1..5].copy_from_slice(&<u32>::to_le_byte_vec(baudrate));

        self.device.set(u8::from(ImuBrickFunction::SetSpitfpBaudrate), payload)
    }

    /// Returns the baudrate for a given Bricklet port, see [`set_spitfp_baudrate`].
    ///
    /// [`set_spitfp_baudrate`]: #method.set_spitfp_baudrate
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    pub fn get_spitfp_baudrate(&self, bricklet_port: char) -> ConvertingReceiver<u32> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));

        self.device.get(u8::from(ImuBrickFunction::GetSpitfpBaudrate), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Brick side. All
    /// Bricklets have a similar function that returns the errors on the Bricklet side.
    ///
    ///
    /// .. versionadded:: 2.3.3$nbsp;(Firmware)
    pub fn get_spitfp_error_count(&self, bricklet_port: char) -> ConvertingReceiver<SpitfpErrorCount> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(bricklet_port));

        self.device.get(u8::from(ImuBrickFunction::GetSpitfpErrorCount), payload)
    }

    /// Enables the status LED.
    ///
    /// The status LED is the blue LED next to the USB connector. If enabled is is
    /// on and it flickers if data is transfered. If disabled it is always off.
    ///
    /// The default state is enabled.
    ///
    ///
    /// .. versionadded:: 2.3.1$nbsp;(Firmware)
    pub fn enable_status_led(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::EnableStatusLed), payload)
    }

    /// Disables the status LED.
    ///
    /// The status LED is the blue LED next to the USB connector. If enabled is is
    /// on and it flickers if data is transfered. If disabled it is always off.
    ///
    /// The default state is enabled.
    ///
    ///
    /// .. versionadded:: 2.3.1$nbsp;(Firmware)
    pub fn disable_status_led(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::DisableStatusLed), payload)
    }

    /// Returns *true* if the status LED is enabled, *false* otherwise.
    ///
    ///
    /// .. versionadded:: 2.3.1$nbsp;(Firmware)
    pub fn is_status_led_enabled(&self) -> ConvertingReceiver<bool> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::IsStatusLedEnabled), payload)
    }

    /// Returns the firmware and protocol version and the name of the Bricklet for a
    /// given port.
    ///
    /// This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet
    /// plugins.
    pub fn get_protocol1_bricklet_name(&self, port: char) -> ConvertingReceiver<Protocol1BrickletName> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<char>::to_le_byte_vec(port));

        self.device.get(u8::from(ImuBrickFunction::GetProtocol1BrickletName), payload)
    }

    /// Returns the temperature in °C/10 as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has an
    /// accuracy of ±15%. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Brick. Calling this function
    /// on a Brick inside of a stack will reset the whole stack.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ImuBrickFunction::Reset), payload)
    }

    /// Returns the UID, the UID where the Brick is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be '0'-'8' (stack position).
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ImuBrickFunction::GetIdentity), payload)
    }
}