1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
/* ***********************************************************
 * This file was automatically generated on 2019-08-23.      *
 *                                                           *
 * Rust Bindings Version 2.0.12                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! 80x60 pixel thermal imaging camera.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/ThermalImaging_Bricklet_Rust.html).
use crate::{
    byte_converter::*,
    converting_callback_receiver::ConvertingCallbackReceiver,
    converting_high_level_callback_receiver::ConvertingHighLevelCallbackReceiver,
    converting_receiver::{BrickletRecvTimeoutError, ConvertingReceiver},
    device::*,
    ip_connection::GetRequestSender,
    low_level_traits::*,
};
pub enum ThermalImagingBrickletFunction {
    GetHighContrastImageLowLevel,
    GetTemperatureImageLowLevel,
    GetStatistics,
    SetResolution,
    GetResolution,
    SetSpotmeterConfig,
    GetSpotmeterConfig,
    SetHighContrastConfig,
    GetHighContrastConfig,
    SetImageTransferConfig,
    GetImageTransferConfig,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackHighContrastImageLowLevel,
    CallbackTemperatureImageLowLevel,
}
impl From<ThermalImagingBrickletFunction> for u8 {
    fn from(fun: ThermalImagingBrickletFunction) -> Self {
        match fun {
            ThermalImagingBrickletFunction::GetHighContrastImageLowLevel => 1,
            ThermalImagingBrickletFunction::GetTemperatureImageLowLevel => 2,
            ThermalImagingBrickletFunction::GetStatistics => 3,
            ThermalImagingBrickletFunction::SetResolution => 4,
            ThermalImagingBrickletFunction::GetResolution => 5,
            ThermalImagingBrickletFunction::SetSpotmeterConfig => 6,
            ThermalImagingBrickletFunction::GetSpotmeterConfig => 7,
            ThermalImagingBrickletFunction::SetHighContrastConfig => 8,
            ThermalImagingBrickletFunction::GetHighContrastConfig => 9,
            ThermalImagingBrickletFunction::SetImageTransferConfig => 10,
            ThermalImagingBrickletFunction::GetImageTransferConfig => 11,
            ThermalImagingBrickletFunction::GetSpitfpErrorCount => 234,
            ThermalImagingBrickletFunction::SetBootloaderMode => 235,
            ThermalImagingBrickletFunction::GetBootloaderMode => 236,
            ThermalImagingBrickletFunction::SetWriteFirmwarePointer => 237,
            ThermalImagingBrickletFunction::WriteFirmware => 238,
            ThermalImagingBrickletFunction::SetStatusLedConfig => 239,
            ThermalImagingBrickletFunction::GetStatusLedConfig => 240,
            ThermalImagingBrickletFunction::GetChipTemperature => 242,
            ThermalImagingBrickletFunction::Reset => 243,
            ThermalImagingBrickletFunction::WriteUid => 248,
            ThermalImagingBrickletFunction::ReadUid => 249,
            ThermalImagingBrickletFunction::GetIdentity => 255,
            ThermalImagingBrickletFunction::CallbackHighContrastImageLowLevel => 12,
            ThermalImagingBrickletFunction::CallbackTemperatureImageLowLevel => 13,
        }
    }
}
pub const THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_6553_KELVIN: u8 = 0;
pub const THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_655_KELVIN: u8 = 1;
pub const THERMAL_IMAGING_BRICKLET_FFC_STATUS_NEVER_COMMANDED: u8 = 0;
pub const THERMAL_IMAGING_BRICKLET_FFC_STATUS_IMMINENT: u8 = 1;
pub const THERMAL_IMAGING_BRICKLET_FFC_STATUS_IN_PROGRESS: u8 = 2;
pub const THERMAL_IMAGING_BRICKLET_FFC_STATUS_COMPLETE: u8 = 3;
pub const THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_MANUAL_HIGH_CONTRAST_IMAGE: u8 = 0;
pub const THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_MANUAL_TEMPERATURE_IMAGE: u8 = 1;
pub const THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE: u8 = 2;
pub const THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_TEMPERATURE_IMAGE: u8 = 3;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy)]
pub struct HighContrastImageLowLevel {
    pub image_chunk_offset: u16,
    pub image_chunk_data: [u8; 62],
}
impl FromByteSlice for HighContrastImageLowLevel {
    fn bytes_expected() -> usize { 64 }
    fn from_le_byte_slice(bytes: &[u8]) -> HighContrastImageLowLevel {
        HighContrastImageLowLevel {
            image_chunk_offset: <u16>::from_le_byte_slice(&bytes[0..2]),
            image_chunk_data: <[u8; 62]>::from_le_byte_slice(&bytes[2..64]),
        }
    }
}
impl LowLevelRead<u8, HighContrastImageResult> for HighContrastImageLowLevel {
    fn ll_message_length(&self) -> usize { 4800 }

    fn ll_message_chunk_offset(&self) -> usize { self.image_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[u8] { &self.image_chunk_data }

    fn get_result(&self) -> HighContrastImageResult { HighContrastImageResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TemperatureImageLowLevel {
    pub image_chunk_offset: u16,
    pub image_chunk_data: [u16; 31],
}
impl FromByteSlice for TemperatureImageLowLevel {
    fn bytes_expected() -> usize { 64 }
    fn from_le_byte_slice(bytes: &[u8]) -> TemperatureImageLowLevel {
        TemperatureImageLowLevel {
            image_chunk_offset: <u16>::from_le_byte_slice(&bytes[0..2]),
            image_chunk_data: <[u16; 31]>::from_le_byte_slice(&bytes[2..64]),
        }
    }
}
impl LowLevelRead<u16, TemperatureImageResult> for TemperatureImageLowLevel {
    fn ll_message_length(&self) -> usize { 4800 }

    fn ll_message_chunk_offset(&self) -> usize { self.image_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[u16] { &self.image_chunk_data }

    fn get_result(&self) -> TemperatureImageResult { TemperatureImageResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Statistics {
    pub spotmeter_statistics: [u16; 4],
    pub temperatures: [u16; 4],
    pub resolution: u8,
    pub ffc_status: u8,
    pub temperature_warning: [bool; 2],
}
impl FromByteSlice for Statistics {
    fn bytes_expected() -> usize { 19 }
    fn from_le_byte_slice(bytes: &[u8]) -> Statistics {
        Statistics {
            spotmeter_statistics: <[u16; 4]>::from_le_byte_slice(&bytes[0..8]),
            temperatures: <[u16; 4]>::from_le_byte_slice(&bytes[8..16]),
            resolution: <u8>::from_le_byte_slice(&bytes[16..17]),
            ffc_status: <u8>::from_le_byte_slice(&bytes[17..18]),
            temperature_warning: <[bool; 2]>::from_le_byte_slice(&bytes[18..19]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct HighContrastConfig {
    pub region_of_interest: [u8; 4],
    pub dampening_factor: u16,
    pub clip_limit: [u16; 2],
    pub empty_counts: u16,
}
impl FromByteSlice for HighContrastConfig {
    fn bytes_expected() -> usize { 12 }
    fn from_le_byte_slice(bytes: &[u8]) -> HighContrastConfig {
        HighContrastConfig {
            region_of_interest: <[u8; 4]>::from_le_byte_slice(&bytes[0..4]),
            dampening_factor: <u16>::from_le_byte_slice(&bytes[4..6]),
            clip_limit: <[u16; 2]>::from_le_byte_slice(&bytes[6..10]),
            empty_counts: <u16>::from_le_byte_slice(&bytes[10..12]),
        }
    }
}

#[derive(Clone, Copy)]
pub struct HighContrastImageLowLevelEvent {
    pub image_chunk_offset: u16,
    pub image_chunk_data: [u8; 62],
}
impl FromByteSlice for HighContrastImageLowLevelEvent {
    fn bytes_expected() -> usize { 64 }
    fn from_le_byte_slice(bytes: &[u8]) -> HighContrastImageLowLevelEvent {
        HighContrastImageLowLevelEvent {
            image_chunk_offset: <u16>::from_le_byte_slice(&bytes[0..2]),
            image_chunk_data: <[u8; 62]>::from_le_byte_slice(&bytes[2..64]),
        }
    }
}
impl LowLevelRead<u8, HighContrastImageResult> for HighContrastImageLowLevelEvent {
    fn ll_message_length(&self) -> usize { 4800 }

    fn ll_message_chunk_offset(&self) -> usize { self.image_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[u8] { &self.image_chunk_data }

    fn get_result(&self) -> HighContrastImageResult { HighContrastImageResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TemperatureImageLowLevelEvent {
    pub image_chunk_offset: u16,
    pub image_chunk_data: [u16; 31],
}
impl FromByteSlice for TemperatureImageLowLevelEvent {
    fn bytes_expected() -> usize { 64 }
    fn from_le_byte_slice(bytes: &[u8]) -> TemperatureImageLowLevelEvent {
        TemperatureImageLowLevelEvent {
            image_chunk_offset: <u16>::from_le_byte_slice(&bytes[0..2]),
            image_chunk_data: <[u16; 31]>::from_le_byte_slice(&bytes[2..64]),
        }
    }
}
impl LowLevelRead<u16, TemperatureImageResult> for TemperatureImageLowLevelEvent {
    fn ll_message_length(&self) -> usize { 4800 }

    fn ll_message_chunk_offset(&self) -> usize { self.image_chunk_offset as usize }

    fn ll_message_chunk_data(&self) -> &[u16] { &self.image_chunk_data }

    fn get_result(&self) -> TemperatureImageResult { TemperatureImageResult {} }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct HighContrastImageResult {}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct TemperatureImageResult {}

/// 80x60 pixel thermal imaging camera
#[derive(Clone)]
pub struct ThermalImagingBricklet {
    device: Device,
}
impl ThermalImagingBricklet {
    pub const DEVICE_IDENTIFIER: u16 = 278;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Thermal Imaging Bricklet";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> ThermalImagingBricklet {
        let mut result = ThermalImagingBricklet { device: Device::new([2, 0, 0], uid, req_sender, 4) };
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetHighContrastImageLowLevel) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetTemperatureImageLowLevel) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetStatistics) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetResolution) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetResolution) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetSpotmeterConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetSpotmeterConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetHighContrastConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetHighContrastConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetImageTransferConfig) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetImageTransferConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetWriteFirmwarePointer) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::WriteFirmware) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::SetStatusLedConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetStatusLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(ThermalImagingBrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::thermal_imaging_bricklet::ThermalImagingBricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::thermal_imaging_bricklet::ThermalImagingBricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: ThermalImagingBrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: ThermalImagingBrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered with every new high contrast image if the transfer image
    /// config is configured for high contrast receiver (see [`set_image_transfer_config`]).
    ///
    /// The data is organized as a 8-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 8-bit value represents one gray-scale image pixel that can directly be
    /// shown to a user on a display.
    ///
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_high_contrast_image_low_level_callback_receiver(&self) -> ConvertingCallbackReceiver<HighContrastImageLowLevelEvent> {
        self.device.get_callback_receiver(u8::from(ThermalImagingBrickletFunction::CallbackHighContrastImageLowLevel))
    }

    /// This receiver is triggered with every new high contrast image if the transfer image
    /// config is configured for high contrast receiver (see [`set_image_transfer_config`]).
    ///
    /// The data is organized as a 8-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 8-bit value represents one gray-scale image pixel that can directly be
    /// shown to a user on a display.
    ///
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_high_contrast_image_callback_receiver(
        &self,
    ) -> ConvertingHighLevelCallbackReceiver<u8, HighContrastImageResult, HighContrastImageLowLevelEvent> {
        ConvertingHighLevelCallbackReceiver::new(
            self.device.get_callback_receiver(u8::from(ThermalImagingBrickletFunction::CallbackHighContrastImageLowLevel)),
        )
    }

    /// This receiver is triggered with every new temperature image if the transfer image
    /// config is configured for temperature receiver (see [`set_image_transfer_config`]).
    ///
    /// The data is organized as a 16-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 16-bit value represents one temperature measurement in either
    /// Kelvin/10 or Kelvin/100 (depending on the resolution set with [`set_resolution`]).
    ///
    /// [`set_resolution`]: #method.set_resolution
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_temperature_image_low_level_callback_receiver(&self) -> ConvertingCallbackReceiver<TemperatureImageLowLevelEvent> {
        self.device.get_callback_receiver(u8::from(ThermalImagingBrickletFunction::CallbackTemperatureImageLowLevel))
    }

    /// This receiver is triggered with every new temperature image if the transfer image
    /// config is configured for temperature receiver (see [`set_image_transfer_config`]).
    ///
    /// The data is organized as a 16-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 16-bit value represents one temperature measurement in either
    /// Kelvin/10 or Kelvin/100 (depending on the resolution set with [`set_resolution`]).
    ///
    /// [`set_resolution`]: #method.set_resolution
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_temperature_image_callback_receiver(
        &self,
    ) -> ConvertingHighLevelCallbackReceiver<u16, TemperatureImageResult, TemperatureImageLowLevelEvent> {
        ConvertingHighLevelCallbackReceiver::new(
            self.device.get_callback_receiver(u8::from(ThermalImagingBrickletFunction::CallbackTemperatureImageLowLevel)),
        )
    }

    /// Returns the current high contrast image. See [here](https://www.tinkerforge.com/en/doc/Hardware/Bricklets/Thermal_Imaging.html#high-contrast-image-vs-temperature-image)__
    /// for the difference between
    /// High Contrast and Temperature Image. If you don't know what to use
    /// the High Contrast Image is probably right for you.
    ///
    /// The data is organized as a 8-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 8-bit value represents one gray-scale image pixel that can directly be
    /// shown to a user on a display.
    ///
    /// Before you can use this function you have to enable it with
    /// [`set_image_transfer_config`].
    ///
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_high_contrast_image_low_level(&self) -> ConvertingReceiver<HighContrastImageLowLevel> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetHighContrastImageLowLevel), payload)
    }

    /// Returns the current high contrast image. See [here](https://www.tinkerforge.com/en/doc/Hardware/Bricklets/Thermal_Imaging.html#high-contrast-image-vs-temperature-image)__
    /// for the difference between
    /// High Contrast and Temperature Image. If you don't know what to use
    /// the High Contrast Image is probably right for you.
    ///
    /// The data is organized as a 8-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 8-bit value represents one gray-scale image pixel that can directly be
    /// shown to a user on a display.
    ///
    /// Before you can use this function you have to enable it with
    /// [`set_image_transfer_config`].
    ///
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_high_contrast_image(&self) -> Result<Vec<u8>, BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(0, &mut || self.get_high_contrast_image_low_level().recv())?;
        Ok(ll_result.0)
    }

    /// Returns the current temperature image. See [here](https://www.tinkerforge.com/en/doc/Hardware/Bricklets/Thermal_Imaging.html#high-contrast-image-vs-temperature-image)__
    /// for the difference between High Contrast and Temperature Image.
    /// If you don't know what to use the High Contrast Image is probably right for you.
    ///
    /// The data is organized as a 16-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 16-bit value represents one temperature measurement in either
    /// Kelvin/10 or Kelvin/100 (depending on the resolution set with [`set_resolution`]).
    ///
    /// Before you can use this function you have to enable it with
    /// [`set_image_transfer_config`].
    ///
    /// [`set_resolution`]: #method.set_resolution
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_temperature_image_low_level(&self) -> ConvertingReceiver<TemperatureImageLowLevel> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetTemperatureImageLowLevel), payload)
    }

    /// Returns the current temperature image. See [here](https://www.tinkerforge.com/en/doc/Hardware/Bricklets/Thermal_Imaging.html#high-contrast-image-vs-temperature-image)__
    /// for the difference between High Contrast and Temperature Image.
    /// If you don't know what to use the High Contrast Image is probably right for you.
    ///
    /// The data is organized as a 16-bit value 80x60 pixel matrix linearized in
    /// a one-dimensional array. The data is arranged line by line from top left to
    /// bottom right.
    ///
    /// Each 16-bit value represents one temperature measurement in either
    /// Kelvin/10 or Kelvin/100 (depending on the resolution set with [`set_resolution`]).
    ///
    /// Before you can use this function you have to enable it with
    /// [`set_image_transfer_config`].
    ///
    /// [`set_resolution`]: #method.set_resolution
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn get_temperature_image(&self) -> Result<Vec<u16>, BrickletRecvTimeoutError> {
        let ll_result = self.device.get_high_level(1, &mut || self.get_temperature_image_low_level().recv())?;
        Ok(ll_result.0)
    }

    /// Returns the spotmeter statistics, various temperatures, current resolution and status bits.
    ///
    /// The spotmeter statistics are:
    ///
    /// * Index 0: Mean Temperature.
    /// * Index 1: Maximum Temperature.
    /// * Index 2: Minimum Temperature.
    /// * Index 3: Pixel Count of spotmeter region of interest.
    ///
    /// The temperatures are:
    ///
    /// * Index 0: Focal Plain Array temperature.
    /// * Index 1: Focal Plain Array temperature at last FFC (Flat Field Correction).
    /// * Index 2: Housing temperature.
    /// * Index 3: Housing temperature at last FFC.
    ///
    /// The resolution is either `0 to 6553 Kelvin` or `0 to 655 Kelvin`. If the resolution is the former,
    /// the temperatures are in Kelvin/10, if it is the latter the temperatures are in Kelvin/100.
    ///
    /// FFC (Flat Field Correction) Status:
    ///
    /// * FFC Never Commanded: Only seen on startup before first FFC.
    /// * FFC Imminent: This state is entered 2 seconds prior to initiating FFC.
    /// * FFC In Progress: Flat field correction is started (shutter moves in front of lens and back). Takes about 1 second.
    /// * FFC Complete: Shutter is in waiting position again, FFC done.
    ///
    /// Temperature warning bits:
    ///
    /// * Index 0: Shutter lockout (if true shutter is locked out because temperature is outside -10°C to +65°C)
    /// * Index 1: Overtemperature shut down imminent (goes true 10 seconds before shutdown)
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_6553_KELVIN
    ///	* THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_655_KELVIN
    ///	* THERMAL_IMAGING_BRICKLET_FFC_STATUS_NEVER_COMMANDED
    ///	* THERMAL_IMAGING_BRICKLET_FFC_STATUS_IMMINENT
    ///	* THERMAL_IMAGING_BRICKLET_FFC_STATUS_IN_PROGRESS
    ///	* THERMAL_IMAGING_BRICKLET_FFC_STATUS_COMPLETE
    pub fn get_statistics(&self) -> ConvertingReceiver<Statistics> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetStatistics), payload)
    }

    /// Sets the resolution. The Thermal Imaging Bricklet can either measure
    ///
    /// * from 0 to 6553 Kelvin (-273.15°C to +6279.85°C) with 0.1°C resolution or
    /// * from 0 to 655 Kelvin (-273.15°C to +381.85°C) with 0.01°C resolution.
    ///
    /// The accuracy is specified for -10°C to 450°C in the
    /// first range and -10°C and 140°C in the second range.
    ///
    /// The default value is 0 to 655 Kelvin.
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_6553_KELVIN
    ///	* THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_655_KELVIN
    pub fn set_resolution(&self, resolution: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(resolution));

        self.device.set(u8::from(ThermalImagingBrickletFunction::SetResolution), payload)
    }

    /// Returns the resolution as set by [`set_resolution`].
    ///
    /// [`set_resolution`]: #method.set_resolution
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_6553_KELVIN
    ///	* THERMAL_IMAGING_BRICKLET_RESOLUTION_0_TO_655_KELVIN
    pub fn get_resolution(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetResolution), payload)
    }

    /// Sets the spotmeter region of interest. The 4 values are
    ///
    /// * Index 0: Column start (has to be smaller then Column end).
    /// * Index 1: Row start (has to be smaller then Row end).
    /// * Index 2: Column end (has to be smaller then 80).
    /// * Index 3: Row end (has to be smaller then 60).
    ///
    /// The spotmeter statistics can be read out with [`get_statistics`].
    ///
    /// The default region of interest is (39, 29, 40, 30).
    ///
    /// [`get_statistics`]: #method.get_statistics
    pub fn set_spotmeter_config(&self, region_of_interest: [u8; 4]) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<[u8; 4]>::to_le_byte_vec(region_of_interest));

        self.device.set(u8::from(ThermalImagingBrickletFunction::SetSpotmeterConfig), payload)
    }

    /// Returns the spotmeter config as set by [`set_spotmeter_config`].
    ///
    /// [`set_spotmeter_config`]: #method.set_spotmeter_config
    pub fn get_spotmeter_config(&self) -> ConvertingReceiver<[u8; 4]> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetSpotmeterConfig), payload)
    }

    /// Sets the high contrast region of interest, dampening factor, clip limit and empty counts.
    /// This config is only used in high contrast mode (see [`set_image_transfer_config`]).
    ///
    /// The high contrast region of interest consists of four values:
    ///
    /// * Index 0: Column start (has to be smaller or equal then Column end).
    /// * Index 1: Row start (has to be smaller then Row end).
    /// * Index 2: Column end (has to be smaller then 80).
    /// * Index 3: Row end (has to be smaller then 60).
    ///
    /// The algorithm to generate the high contrast image is applied to this region.
    ///
    /// Dampening Factor: This parameter is the amount of temporal dampening applied to the HEQ
    /// (history equalization) transformation function. An IIR filter of the form::
    ///
    ///  (N / 256) * previous + ((256 - N) / 256) * current
    ///
    /// is applied, and the HEQ dampening factor
    /// represents the value N in the equation, i.e., a value that applies to the amount of
    /// influence the previous HEQ transformation function has on the current function. The
    /// lower the value of N the higher the influence of the current video frame whereas
    /// the higher the value of N the more influence the previous damped transfer function has.
    ///
    /// Clip Limit Index 0 (AGC HEQ Clip Limit Low): This parameter defines an artificial population that is added to
    /// every non-empty histogram bin. In other words, if the Clip Limit Low is set to L, a bin
    /// with an actual population of X will have an effective population of L + X. Any empty bin
    /// that is nearby a populated bin will be given an artificial population of L. The effect of
    /// higher values is to provide a more linear transfer function; lower values provide a more
    /// non-linear (equalized) transfer function.
    ///
    /// Clip Limit Index 1 (AGC HEQ Clip Limit High): This parameter defines the maximum number of pixels allowed
    /// to accumulate in any given histogram bin. Any additional pixels in a given bin are clipped.
    /// The effect of this parameter is to limit the influence of highly-populated bins on the
    /// resulting HEQ transformation function.
    ///
    /// Empty Counts: This parameter specifies the maximum number of pixels in a bin that will be
    /// interpreted as an empty bin. Histogram bins with this number of pixels or less will be
    /// processed as an empty bin.
    ///
    /// The default values are
    ///
    /// * Region Of Interest = (0, 0, 79, 59),
    /// * Dampening Factor = 64,
    /// * Clip Limit = (4800, 512) and
    /// * Empty Counts = 2.
    ///
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    pub fn set_high_contrast_config(
        &self,
        region_of_interest: [u8; 4],
        dampening_factor: u16,
        clip_limit: [u16; 2],
        empty_counts: u16,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 12];
        payload[0..4].copy_from_slice(&<[u8; 4]>::to_le_byte_vec(region_of_interest));
        payload[4..6].copy_from_slice(&<u16>::to_le_byte_vec(dampening_factor));
        payload[6..10].copy_from_slice(&<[u16; 2]>::to_le_byte_vec(clip_limit));
        payload[10..12].copy_from_slice(&<u16>::to_le_byte_vec(empty_counts));

        self.device.set(u8::from(ThermalImagingBrickletFunction::SetHighContrastConfig), payload)
    }

    /// Returns the high contrast config as set by [`set_high_contrast_config`].
    ///
    /// [`set_high_contrast_config`]: #method.set_high_contrast_config
    pub fn get_high_contrast_config(&self) -> ConvertingReceiver<HighContrastConfig> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetHighContrastConfig), payload)
    }

    /// The necessary bandwidth of this Bricklet is too high to use getter/receiver or
    /// high contrast/temperature image at the same time. You have to configure the one
    /// you want to use, the Bricklet will optimize the internal configuration accordingly.
    ///
    /// Corresponding functions:
    ///
    /// * Manual High Contrast Image: [`get_high_contrast_image`].
    /// * Manual Temperature Image: [`get_temperature_image`].
    /// * Receiver High Contrast Image: [`get_high_contrast_image_callback_receiver`] receiver.
    /// * Receiver Temperature Image: [`get_temperature_image_callback_receiver`] receiver.
    ///
    /// The default is Manual High Contrast Image (0).
    ///
    /// [`get_high_contrast_image`]: #method.get_high_contrast_image
    /// [`get_temperature_image`]: #method.get_temperature_image
    /// [`get_high_contrast_image_callback_receiver`]: #method.get_high_contrast_image_callback_receiver
    /// [`get_temperature_image_callback_receiver`]: #method.get_temperature_image_callback_receiver
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_MANUAL_HIGH_CONTRAST_IMAGE
    ///	* THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_MANUAL_TEMPERATURE_IMAGE
    ///	* THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE
    ///	* THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_TEMPERATURE_IMAGE
    pub fn set_image_transfer_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(ThermalImagingBrickletFunction::SetImageTransferConfig), payload)
    }

    /// Returns the image transfer config, as set by [`set_image_transfer_config`].
    ///
    /// [`set_image_transfer_config`]: #method.set_image_transfer_config
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_MANUAL_HIGH_CONTRAST_IMAGE
    ///	* THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_MANUAL_TEMPERATURE_IMAGE
    ///	* THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE
    ///	* THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_TEMPERATURE_IMAGE
    pub fn get_image_transfer_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetImageTransferConfig), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(ThermalImagingBrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// [`set_bootloader_mode`]: #method.set_bootloader_mode
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* THERMAL_IMAGING_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// [`write_firmware`]: #method.write_firmware
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(ThermalImagingBrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// [`set_write_firmware_pointer`]: #method.set_write_firmware_pointer
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(ThermalImagingBrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(ThermalImagingBrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// [`set_status_led_config`]: #method.set_status_led_config
    ///
    /// Associated constants:
    /// * THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* THERMAL_IMAGING_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature in °C as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(ThermalImagingBrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(ThermalImagingBrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c' or 'd'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(ThermalImagingBrickletFunction::GetIdentity), payload)
    }
}