1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/* ***********************************************************
 * This file was automatically generated on 2019-08-23.      *
 *                                                           *
 * Rust Bindings Version 2.0.12                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Battery-backed real-time clock.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/RealTimeClockV2_Bricklet_Rust.html).
use crate::{
    byte_converter::*, converting_callback_receiver::ConvertingCallbackReceiver, converting_receiver::ConvertingReceiver, device::*,
    ip_connection::GetRequestSender,
};
pub enum RealTimeClockV2BrickletFunction {
    SetDateTime,
    GetDateTime,
    GetTimestamp,
    SetOffset,
    GetOffset,
    SetDateTimeCallbackConfiguration,
    GetDateTimeCallbackConfiguration,
    SetAlarm,
    GetAlarm,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackDateTime,
    CallbackAlarm,
}
impl From<RealTimeClockV2BrickletFunction> for u8 {
    fn from(fun: RealTimeClockV2BrickletFunction) -> Self {
        match fun {
            RealTimeClockV2BrickletFunction::SetDateTime => 1,
            RealTimeClockV2BrickletFunction::GetDateTime => 2,
            RealTimeClockV2BrickletFunction::GetTimestamp => 3,
            RealTimeClockV2BrickletFunction::SetOffset => 4,
            RealTimeClockV2BrickletFunction::GetOffset => 5,
            RealTimeClockV2BrickletFunction::SetDateTimeCallbackConfiguration => 6,
            RealTimeClockV2BrickletFunction::GetDateTimeCallbackConfiguration => 7,
            RealTimeClockV2BrickletFunction::SetAlarm => 8,
            RealTimeClockV2BrickletFunction::GetAlarm => 9,
            RealTimeClockV2BrickletFunction::GetSpitfpErrorCount => 234,
            RealTimeClockV2BrickletFunction::SetBootloaderMode => 235,
            RealTimeClockV2BrickletFunction::GetBootloaderMode => 236,
            RealTimeClockV2BrickletFunction::SetWriteFirmwarePointer => 237,
            RealTimeClockV2BrickletFunction::WriteFirmware => 238,
            RealTimeClockV2BrickletFunction::SetStatusLedConfig => 239,
            RealTimeClockV2BrickletFunction::GetStatusLedConfig => 240,
            RealTimeClockV2BrickletFunction::GetChipTemperature => 242,
            RealTimeClockV2BrickletFunction::Reset => 243,
            RealTimeClockV2BrickletFunction::WriteUid => 248,
            RealTimeClockV2BrickletFunction::ReadUid => 249,
            RealTimeClockV2BrickletFunction::GetIdentity => 255,
            RealTimeClockV2BrickletFunction::CallbackDateTime => 10,
            RealTimeClockV2BrickletFunction::CallbackAlarm => 11,
        }
    }
}
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_MONDAY: u8 = 1;
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_TUESDAY: u8 = 2;
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_WEDNESDAY: u8 = 3;
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_THURSDAY: u8 = 4;
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_FRIDAY: u8 = 5;
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_SATURDAY: u8 = 6;
pub const REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_SUNDAY: u8 = 7;
pub const REAL_TIME_CLOCK_V2_BRICKLET_ALARM_MATCH_DISABLED: i8 = -1;
pub const REAL_TIME_CLOCK_V2_BRICKLET_ALARM_INTERVAL_DISABLED: i32 = -1;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct DateTime {
    pub year: u16,
    pub month: u8,
    pub day: u8,
    pub hour: u8,
    pub minute: u8,
    pub second: u8,
    pub centisecond: u8,
    pub weekday: u8,
    pub timestamp: i64,
}
impl FromByteSlice for DateTime {
    fn bytes_expected() -> usize { 17 }
    fn from_le_byte_slice(bytes: &[u8]) -> DateTime {
        DateTime {
            year: <u16>::from_le_byte_slice(&bytes[0..2]),
            month: <u8>::from_le_byte_slice(&bytes[2..3]),
            day: <u8>::from_le_byte_slice(&bytes[3..4]),
            hour: <u8>::from_le_byte_slice(&bytes[4..5]),
            minute: <u8>::from_le_byte_slice(&bytes[5..6]),
            second: <u8>::from_le_byte_slice(&bytes[6..7]),
            centisecond: <u8>::from_le_byte_slice(&bytes[7..8]),
            weekday: <u8>::from_le_byte_slice(&bytes[8..9]),
            timestamp: <i64>::from_le_byte_slice(&bytes[9..17]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Alarm {
    pub month: i8,
    pub day: i8,
    pub hour: i8,
    pub minute: i8,
    pub second: i8,
    pub weekday: i8,
    pub interval: i32,
}
impl FromByteSlice for Alarm {
    fn bytes_expected() -> usize { 10 }
    fn from_le_byte_slice(bytes: &[u8]) -> Alarm {
        Alarm {
            month: <i8>::from_le_byte_slice(&bytes[0..1]),
            day: <i8>::from_le_byte_slice(&bytes[1..2]),
            hour: <i8>::from_le_byte_slice(&bytes[2..3]),
            minute: <i8>::from_le_byte_slice(&bytes[3..4]),
            second: <i8>::from_le_byte_slice(&bytes[4..5]),
            weekday: <i8>::from_le_byte_slice(&bytes[5..6]),
            interval: <i32>::from_le_byte_slice(&bytes[6..10]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct DateTimeEvent {
    pub year: u16,
    pub month: u8,
    pub day: u8,
    pub hour: u8,
    pub minute: u8,
    pub second: u8,
    pub centisecond: u8,
    pub weekday: u8,
    pub timestamp: i64,
}
impl FromByteSlice for DateTimeEvent {
    fn bytes_expected() -> usize { 17 }
    fn from_le_byte_slice(bytes: &[u8]) -> DateTimeEvent {
        DateTimeEvent {
            year: <u16>::from_le_byte_slice(&bytes[0..2]),
            month: <u8>::from_le_byte_slice(&bytes[2..3]),
            day: <u8>::from_le_byte_slice(&bytes[3..4]),
            hour: <u8>::from_le_byte_slice(&bytes[4..5]),
            minute: <u8>::from_le_byte_slice(&bytes[5..6]),
            second: <u8>::from_le_byte_slice(&bytes[6..7]),
            centisecond: <u8>::from_le_byte_slice(&bytes[7..8]),
            weekday: <u8>::from_le_byte_slice(&bytes[8..9]),
            timestamp: <i64>::from_le_byte_slice(&bytes[9..17]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct AlarmEvent {
    pub year: u16,
    pub month: u8,
    pub day: u8,
    pub hour: u8,
    pub minute: u8,
    pub second: u8,
    pub centisecond: u8,
    pub weekday: u8,
    pub timestamp: i64,
}
impl FromByteSlice for AlarmEvent {
    fn bytes_expected() -> usize { 17 }
    fn from_le_byte_slice(bytes: &[u8]) -> AlarmEvent {
        AlarmEvent {
            year: <u16>::from_le_byte_slice(&bytes[0..2]),
            month: <u8>::from_le_byte_slice(&bytes[2..3]),
            day: <u8>::from_le_byte_slice(&bytes[3..4]),
            hour: <u8>::from_le_byte_slice(&bytes[4..5]),
            minute: <u8>::from_le_byte_slice(&bytes[5..6]),
            second: <u8>::from_le_byte_slice(&bytes[6..7]),
            centisecond: <u8>::from_le_byte_slice(&bytes[7..8]),
            weekday: <u8>::from_le_byte_slice(&bytes[8..9]),
            timestamp: <i64>::from_le_byte_slice(&bytes[9..17]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize { 16 }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize { 25 }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

/// Battery-backed real-time clock
#[derive(Clone)]
pub struct RealTimeClockV2Bricklet {
    device: Device,
}
impl RealTimeClockV2Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2106;
    pub const DEVICE_DISPLAY_NAME: &'static str = "Real-Time Clock Bricklet 2.0";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new<T: GetRequestSender>(uid: &str, req_sender: T) -> RealTimeClockV2Bricklet {
        let mut result = RealTimeClockV2Bricklet { device: Device::new([2, 0, 0], uid, req_sender, 0) };
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetDateTime) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetDateTime) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetTimestamp) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetOffset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetOffset) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetDateTimeCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetDateTimeCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetAlarm) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetAlarm) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetSpitfpErrorCount) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetBootloaderMode) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetWriteFirmwarePointer) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::WriteFirmware) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::SetStatusLedConfig) as usize] =
            ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetStatusLedConfig) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetChipTemperature) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(RealTimeClockV2BrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::real_time_clock_v2_bricklet::RealTimeClockV2Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::real_time_clock_v2_bricklet::RealTimeClockV2Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: RealTimeClockV2BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is send
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(
        &mut self,
        fun: RealTimeClockV2BrickletFunction,
        response_expected: bool,
    ) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) { self.device.set_response_expected_all(response_expected) }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] { self.device.api_version }

    /// This receiver is triggered periodically with the period that is set by
    /// [`set_date_time_callback_configuration`]. The parameters are the
    /// same as for [`get_date_time`].
    ///
    /// [`get_date_time`]: #method.get_date_time
    /// [`set_date_time_callback_configuration`]: #method.set_date_time_callback_configuration
    pub fn get_date_time_callback_receiver(&self) -> ConvertingCallbackReceiver<DateTimeEvent> {
        self.device.get_callback_receiver(u8::from(RealTimeClockV2BrickletFunction::CallbackDateTime))
    }

    /// This receiver is triggered every time the current date and time matches the
    /// configured alarm (see [`set_alarm`]). The parameters are the same
    /// as for [`get_date_time`].
    ///
    /// [`get_date_time`]: #method.get_date_time
    /// [`set_alarm`]: #method.set_alarm
    pub fn get_alarm_callback_receiver(&self) -> ConvertingCallbackReceiver<AlarmEvent> {
        self.device.get_callback_receiver(u8::from(RealTimeClockV2BrickletFunction::CallbackAlarm))
    }

    /// Sets the current date (including weekday) and the current time with hundredths
    /// of a second resolution.
    ///
    /// Possible value ranges:
    ///
    /// * Year: 2000 to 2099
    /// * Month: 1 to 12 (January to December)
    /// * Day: 1 to 31
    /// * Hour: 0 to 23
    /// * Minute: 0 to 59
    /// * Second: 0 to 59
    /// * Centisecond: 0 to 99
    /// * Weekday: 1 to 7 (Monday to Sunday)
    ///
    /// If the backup battery is installed then the real-time clock keeps date and
    /// time even if the Bricklet is not powered by a Brick.
    ///
    /// The real-time clock handles leap year and inserts the 29th of February
    /// accordingly. But leap seconds, time zones and daylight saving time are not
    /// handled.
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_MONDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_TUESDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_WEDNESDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_THURSDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_FRIDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_SATURDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_SUNDAY
    pub fn set_date_time(
        &self,
        year: u16,
        month: u8,
        day: u8,
        hour: u8,
        minute: u8,
        second: u8,
        centisecond: u8,
        weekday: u8,
    ) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 9];
        payload[0..2].copy_from_slice(&<u16>::to_le_byte_vec(year));
        payload[2..3].copy_from_slice(&<u8>::to_le_byte_vec(month));
        payload[3..4].copy_from_slice(&<u8>::to_le_byte_vec(day));
        payload[4..5].copy_from_slice(&<u8>::to_le_byte_vec(hour));
        payload[5..6].copy_from_slice(&<u8>::to_le_byte_vec(minute));
        payload[6..7].copy_from_slice(&<u8>::to_le_byte_vec(second));
        payload[7..8].copy_from_slice(&<u8>::to_le_byte_vec(centisecond));
        payload[8..9].copy_from_slice(&<u8>::to_le_byte_vec(weekday));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::SetDateTime), payload)
    }

    /// Returns the current date (including weekday) and the current time of the
    /// real-time clock with hundredths of a second resolution.
    ///
    /// The timestamp represents the current date and the the current time of the
    /// real-time clock converted to milliseconds.
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_MONDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_TUESDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_WEDNESDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_THURSDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_FRIDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_SATURDAY
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_WEEKDAY_SUNDAY
    pub fn get_date_time(&self) -> ConvertingReceiver<DateTime> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetDateTime), payload)
    }

    /// Returns the current date and the time of the real-time clock converted to
    /// milliseconds. The timestamp has an effective resolution of hundredths of a
    /// second.
    pub fn get_timestamp(&self) -> ConvertingReceiver<i64> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetTimestamp), payload)
    }

    /// Sets the offset the real-time clock should compensate for in 2.17 ppm steps
    /// between -277.76 ppm (-128) and +275.59 ppm (127).
    ///
    /// The real-time clock time can deviate from the actual time due to the frequency
    /// deviation of its 32.768 kHz crystal. Even without compensation (factory
    /// default) the resulting time deviation should be at most ±20 ppm (±52.6
    /// seconds per month).
    ///
    /// This deviation can be calculated by comparing the same duration measured by the
    /// real-time clock (``rtc_duration``) an accurate reference clock
    /// (``ref_duration``).
    ///
    /// For best results the configured offset should be set to 0 ppm first and then a
    /// duration of at least 6 hours should be measured.
    ///
    /// The new offset (``new_offset``) can be calculated from the currently configured
    /// offset (``current_offset``) and the measured durations as follow::
    ///
    ///   new_offset = current_offset - round(1000000 * (rtc_duration - ref_duration) / rtc_duration / 2.17)
    ///
    /// If you want to calculate the offset, then we recommend using the calibration
    /// dialog in Brick Viewer, instead of doing it manually.
    ///
    /// The offset is saved in the EEPROM of the Bricklet and only needs to be
    /// configured once.
    pub fn set_offset(&self, offset: i8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<i8>::to_le_byte_vec(offset));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::SetOffset), payload)
    }

    /// Returns the offset as set by [`set_offset`].
    ///
    /// [`set_offset`]: #method.set_offset
    pub fn get_offset(&self) -> ConvertingReceiver<i8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetOffset), payload)
    }

    /// Sets the period in ms with which the [`get_date_time_callback_receiver`] receiver is triggered
    /// periodically. A value of 0 turns the receiver off.
    ///
    /// The default value is 0.
    ///
    /// [`get_date_time_callback_receiver`]: #method.get_date_time_callback_receiver
    pub fn set_date_time_callback_configuration(&self, period: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(period));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::SetDateTimeCallbackConfiguration), payload)
    }

    /// Returns the period as set by [`set_date_time_callback_configuration`].
    ///
    /// [`set_date_time_callback_configuration`]: #method.set_date_time_callback_configuration
    pub fn get_date_time_callback_configuration(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetDateTimeCallbackConfiguration), payload)
    }

    /// Configures a repeatable alarm. The [`get_alarm_callback_receiver`] receiver is triggered if the
    /// current date and time matches the configured alarm.
    ///
    /// Setting a parameter to -1 means that it should be disabled and doesn't take part
    /// in the match. Setting all parameters to -1 disables the alarm completely.
    ///
    /// For example, to make the alarm trigger every day at 7:30 AM it can be
    /// configured as (-1, -1, 7, 30, -1, -1, -1). The hour is set to match 7 and the
    /// minute is set to match 30. The alarm is triggered if all enabled parameters
    /// match.
    ///
    /// The interval has a special role. It allows to make the alarm reconfigure itself.
    /// This is useful if you need a repeated alarm that cannot be expressed by matching
    /// the current date and time. For example, to make the alarm trigger every 23
    /// seconds it can be configured as (-1, -1, -1, -1, -1, -1, 23). Internally the
    /// Bricklet will take the current date and time, add 23 seconds to it and set the
    /// result as its alarm. The first alarm will be triggered 23 seconds after the
    /// call. Because the interval is not -1, the Bricklet will do the same again
    /// internally, take the current date and time, add 23 seconds to it and set that
    /// as its alarm. This results in a repeated alarm that triggers every 23 seconds.
    ///
    /// The interval can also be used in combination with the other parameters. For
    /// example, configuring the alarm as (-1, -1, 7, 30, -1, -1, 300) results in an
    /// alarm that triggers every day at 7:30 AM and is then repeated every 5 minutes.
    ///
    /// [`get_alarm_callback_receiver`]: #method.get_alarm_callback_receiver
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_ALARM_MATCH_DISABLED
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_ALARM_INTERVAL_DISABLED
    pub fn set_alarm(&self, month: i8, day: i8, hour: i8, minute: i8, second: i8, weekday: i8, interval: i32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 10];
        payload[0..1].copy_from_slice(&<i8>::to_le_byte_vec(month));
        payload[1..2].copy_from_slice(&<i8>::to_le_byte_vec(day));
        payload[2..3].copy_from_slice(&<i8>::to_le_byte_vec(hour));
        payload[3..4].copy_from_slice(&<i8>::to_le_byte_vec(minute));
        payload[4..5].copy_from_slice(&<i8>::to_le_byte_vec(second));
        payload[5..6].copy_from_slice(&<i8>::to_le_byte_vec(weekday));
        payload[6..10].copy_from_slice(&<i32>::to_le_byte_vec(interval));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::SetAlarm), payload)
    }

    /// Returns the alarm configuration as set by [`set_alarm`].
    ///
    /// [`set_alarm`]: #method.set_alarm
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_ALARM_MATCH_DISABLED
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_ALARM_INTERVAL_DISABLED
    pub fn get_alarm(&self) -> ConvertingReceiver<Alarm> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetAlarm), payload)
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub fn get_spitfp_error_count(&self) -> ConvertingReceiver<SpitfpErrorCount> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetSpitfpErrorCount), payload)
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub fn set_bootloader_mode(&self, mode: u8) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(mode));

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::SetBootloaderMode), payload)
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// [`set_bootloader_mode`]: #method.set_bootloader_mode
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub fn get_bootloader_mode(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetBootloaderMode), payload)
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// [`write_firmware`]: #method.write_firmware
    pub fn set_write_firmware_pointer(&self, pointer: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(pointer));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::SetWriteFirmwarePointer), payload)
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// [`set_write_firmware_pointer`]: #method.set_write_firmware_pointer
    pub fn write_firmware(&self, data: [u8; 64]) -> ConvertingReceiver<u8> {
        let mut payload = vec![0; 64];
        payload[0..64].copy_from_slice(&<[u8; 64]>::to_le_byte_vec(data));

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::WriteFirmware), payload)
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn set_status_led_config(&self, config: u8) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 1];
        payload[0..1].copy_from_slice(&<u8>::to_le_byte_vec(config));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::SetStatusLedConfig), payload)
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// [`set_status_led_config`]: #method.set_status_led_config
    ///
    /// Associated constants:
    /// * REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* REAL_TIME_CLOCK_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub fn get_status_led_config(&self) -> ConvertingReceiver<u8> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetStatusLedConfig), payload)
    }

    /// Returns the temperature in °C as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub fn get_chip_temperature(&self) -> ConvertingReceiver<i16> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetChipTemperature), payload)
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub fn reset(&self) -> ConvertingReceiver<()> {
        let payload = vec![0; 0];

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::Reset), payload)
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub fn write_uid(&self, uid: u32) -> ConvertingReceiver<()> {
        let mut payload = vec![0; 4];
        payload[0..4].copy_from_slice(&<u32>::to_le_byte_vec(uid));

        self.device.set(u8::from(RealTimeClockV2BrickletFunction::WriteUid), payload)
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub fn read_uid(&self) -> ConvertingReceiver<u32> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::ReadUid), payload)
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c' or 'd'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub fn get_identity(&self) -> ConvertingReceiver<Identity> {
        let payload = vec![0; 0];

        self.device.get(u8::from(RealTimeClockV2BrickletFunction::GetIdentity), payload)
    }
}