1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//! This crate provides a way to define type wrappers that behave
//! as close as possible to the underlying type, but guarantee to
//! uphold arbitrary invariants at all times.
//!
//! # Example
//! ```
//! use tightness::{bound, Bounded};
//! bound!(Username: String where |s| s.len() < 8);
//! ```
//!
//! The [`bound`](bound) macro invocation above defines a `Username` type (actually,
//! a type alias of [`Bounded<String, UsernameBound>`](Bounded)) that is
//! a thin wrapper around String, with the added promise that it will
//! always have less than eight characters.
//!
//! Immutable access behaves as close as possible to the underlying type,
//! with all traits you'd expect from a newtype wrapper already implemented:
//!
//! ```
//! # use tightness::{bound, Bounded};
//! # bound!(Username: String where |s| s.len() < 8);
//! # let username = Username::new("Admin".to_string()).unwrap();
//! assert!(username.chars().all(char::is_alphanumeric));
//! let solid_credentials = format!("{}:{}", *username, "Password");
//! ```
//!
//! However, construction and mutable access must be done through a fixed set of forms that
//! ensure the invariants are *always* upheld:
//!
//! ```
//! use tightness::{self, bound, Bounded};
//! bound!(Username: String where |s| s.len() < 8);
//!
//! // The only constructor is fallible, and the input value must satisfy
//! // the bound conditions for it to succeed.
//! assert!(matches!(Username::new("Far_too_long".to_string()),
//!    Err(tightness::ConstructionError(_))));
//! let mut username = Username::new("Short".to_string()).unwrap();
//!
//! // In-place mutation panics if the invariant is broken:
//! // Would panic: `username.mutate(|u| u.push_str("Far_too_long"))`
//! username.mutate(|u| *u = u.to_uppercase());
//! assert_eq!(*username, "SHORT");
//!
//! // If the underlying type implements `clone`, you can try non-destructive,
//! // fallible mutation at the cost of one copy:
//! assert!(matches!(username.try_mutate(|u| u.push_str("Far_too_long")),
//!    Err(tightness::MutationError(None))));
//! assert_eq!(*username, "SHORT");
//!
//! // You can also attempt mutation by providing a fallback value
//! let fallback = username.clone();
//! assert!(matches!(username.mutate_or(fallback, |u| u.push_str("Far_too_long")),
//!    Err(tightness::MutationError(None))));
//! assert_eq!(*username, "SHORT");
//!
//! // Finally, you can just pass by value, and the inner will be recoverable if mutation fails
//! assert!(matches!(username.into_mutated(|u| u.push_str("Far_too_long")),
//!     Err(tightness::MutationError(Some(_)))));
//! ```
//!
//! # Performance
//!
//! Since invariants are arbitrarily complex, it's not possible to guarantee they're evaluated at
//! compile time. Using a [`Bounded`](Bounded) type incurs the cost of invoking the invariant
//! function on construction and after every mutation. However, the function is known at compile
//! time, so it's possible for the compiler to elide it in the trivial cases.
//!
//! Complex mutations consisting of multiple operations can be batched in a single closure, so that
//! the invariant is enforced only once at the end. Be careful however: while the closure is
//! executing, the value is considered to be mid-mutation and the invariant may not hold. Don't use
//! the inner value to trigger any side effects that depend on it being correct.
//!
//! Enabling the feature flag `unsafe_access` expands [`Bounded`](Bounded) types with a set of
//! methods that allow unsafe construction and mutation, requiring you to uphold the invariants
//! manually. It also offers a `verify` method that allows you to check the invariants at any time.
//! This can help in the cases where maximum performance is needed, but it must be used with
//! caution.
//!
//! # Without Macros
//!
//! The [`bound`](bound) macro simplifies defining bound types, but it's also possible to define
//! them directly. The following is equivalent to `bound!(pub NonZero: usize where |u| u > 0)`;
//!
//! ```
//! #[derive(Debug)]
//! pub struct NonZeroBound;
//!
//! impl tightness::Bound for NonZeroBound {
//!     type Target = usize;
//!     fn check(target: &usize) -> bool { *target > 0 }
//! }
//!
//! pub type NonZero = tightness::Bounded<usize, NonZeroBound>;
//! ```
//!
//! The bound is associated to the type, and will then be called on construction and after mutation
//! of any value of type `NonZero`.

#![cfg_attr(not(feature = "unsafe_access"), forbid(unsafe_code))]
pub use crate::core::*;
mod core;

#[doc(hidden)]
pub use paste::paste;

/// Convenience macro that defines a bounded type, which is guaranteed to always uphold an
/// invariant expressed as a boolean function. The resulting type is an alias of [`Bounded<BaseType,
/// TypeNameBound>`](Bounded).
///
/// # Examples
/// ```
/// use tightness::{bound, Bounded};
///
/// // Defines a public `Letter` type that wraps `char`, ensuring it's always alphabetic.
/// bound!(pub Letter: char where |c| c.is_alphabetic());
///
/// // Defines a private `XorPair` type that wraps a pair of bools, so that they're never both true
/// // or false.
/// bound!(XorPair: (bool, bool) where |(a, b)| a ^ b);
/// ```
#[macro_export]
macro_rules! bound {
    ($visib:vis $name:ident: $type:ty where $check:expr) => {
        $crate::paste! {
            #[derive(Debug)]
            $visib struct [<$name Bound>];

            impl $crate::Bound for [<$name Bound>] {
                type Target = $type;
                fn check(target: &Self::Target) -> bool {
                    let check: fn(&Self::Target) -> bool = $check;
                    check(target)
                }
            }

            $visib type $name = $crate::Bounded<$type, [<$name Bound>]>;
        }
    };
}

#[cfg(test)]
mod tests {
    use super::*;
    bound!(Password: String where |p| p.len() < 8 && p.chars().all(char::is_alphanumeric));
    bound!(Month: usize where |m| *m < 12usize);
    bound!(XorPair: (bool, bool) where |(a, b)| a ^ b);

    impl std::ops::Add<usize> for Month {
        type Output = Self;

        fn add(mut self, rhs: usize) -> Self::Output {
            self.mutate(|m| *m = (*m + rhs) & 12usize);
            self
        }
    }

    #[test]
    #[should_panic]
    fn invalid_bound_string_operation_panics() {
        let mut password = Password::new("Hello".to_owned()).unwrap();
        password.mutate(|p| p.push_str("World"));
    }

    #[test]
    fn fallible_constructions_fail_on_invalid_input() {
        assert!(Month::new(22).is_err());
        assert!(Password::new("---".to_owned()).is_err());
        assert!(XorPair::new((true, true)).is_err());
    }

    #[test]
    fn fallible_mutations_fail_on_invalid_final_values() {
        let mut month = Month::new(7).unwrap();
        let impossible_mutation = |m: &mut usize| *m = *m + 13;
        assert!(matches!(month.try_mutate(impossible_mutation), Err(MutationError(None))));
        assert!(matches!(
            month.mutate_or(month.clone(), impossible_mutation),
            Err(MutationError(None))
        ));
        assert!(matches!(month.into_mutated(impossible_mutation), Err(MutationError(Some(20)))));

        let mut xor_pair = XorPair::new((true, false)).unwrap();
        assert!(matches!(xor_pair.try_mutate(|(a, b)| *a = *b), Err(MutationError(None))));
    }

    #[test]
    fn fallible_mutations_succeed_on_valid_final_values() {
        let mut month = Month::new(7).unwrap();
        month.try_mutate(|m| *m += 1).unwrap();
        assert_eq!(*month, 8);
        month.mutate_or(month.clone(), |m| *m += 1).unwrap();
        assert_eq!(*month, 9);
        let month = month.into_mutated(|m| *m += 1).unwrap();
        assert_eq!(*month, 10);
    }

    #[test]
    fn convenient_operators_on_bounded_types() {
        fn takes_as_ref<T: AsRef<usize>>(_: &T) {}
        let month = Month::new(1).unwrap();
        takes_as_ref(&month);
        assert_eq!(month, month.clone());

        bound!(FixedVec: Vec<bool> where |v| v.len() == 4);
        let fixed = FixedVec::new(vec![false, true, false, false]).unwrap();
        assert_eq!(fixed[1], true);
    }
}