1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
//! Threefish

#![no_std]

extern crate byte_tools;
extern crate block_cipher_trait;
extern crate generic_array;
use core::ops::BitXor;

mod consts;
use consts::{C240, R_256, R_512, R_1024, P_256, P_512, P_1024};

use byte_tools::{read_u64v_le, write_u64v_le};
use block_cipher_trait::BlockCipher;
use generic_array::typenum::{U1, U32, U64, U128};
use generic_array::GenericArray;

fn mix(r: u32, x: (u64, u64)) -> (u64, u64) {
    let y0 = x.0.wrapping_add(x.1);
    let y1 = x.1.rotate_left(r) ^ y0;
    (y0, y1)
}

fn inv_mix(r: u32, y: (u64, u64)) -> (u64, u64) {
    let x1 = (y.0 ^ y.1).rotate_right(r);
    let x0 = y.0.wrapping_sub(x1);
    (x0, x1)
}

macro_rules! impl_threefish(
    (
        $name:ident, $rounds:expr, $n_w:expr, $block_size:ty,
        $rot:expr, $perm:expr
    ) => (

        #[derive(Clone, Copy)]
        pub struct $name {
            sk: [[u64; $n_w]; $rounds / 4 + 1]
        }

        impl $name {
            pub fn new_with_tweak(key: &[u8; $n_w*8], tweak: &[u8; 16]) -> $name {
                let mut k = [0u64; $n_w + 1];
                read_u64v_le(&mut k[..$n_w], key);
                k[$n_w] = k[..$n_w].iter().fold(C240, BitXor::bitxor);

                let mut t = [0u64; 3];
                read_u64v_le(&mut t[..2], tweak);
                t[2] = t[0] ^ t[1];

                let mut sk = [[0u64; $n_w]; $rounds / 4 + 1];
                for s in 0..($rounds / 4 + 1) {
                    for i in 0..$n_w {
                        sk[s][i] = k[(s + i) % ($n_w + 1)];
                        if i == $n_w - 3 {
                            sk[s][i] = sk[s][i].wrapping_add(t[s % 3]);
                        } else if i == $n_w - 2 {
                            sk[s][i] = sk[s][i].wrapping_add(t[(s + 1) % 3]);
                        } else if i == $n_w - 1 {
                            sk[s][i] = sk[s][i].wrapping_add(s as u64);
                        }
                    }
                }

                $name { sk: sk }
            }
        }

        impl BlockCipher for $name {
            type KeySize = $block_size;
            type BlockSize = $block_size;
            type ParBlocks = U1;

            fn new(key: &GenericArray<u8, Self::KeySize>) -> Self {
                let mut tmp_key = [0u8; $n_w*8];
                tmp_key.copy_from_slice(key);
                Self::new_with_tweak(&tmp_key, &Default::default())
            }

            fn encrypt_block(&self, block: &mut GenericArray<u8, Self::BlockSize>) {
                let mut v = [0u64; $n_w];
                read_u64v_le(&mut v, block.as_slice());

                for d in 0..$rounds {
                    let v_tmp = v.clone();
                    for j in 0..($n_w / 2) {
                        let (v0, v1) = (v_tmp[2 * j], v_tmp[2 * j + 1]);
                        let (e0, e1) =
                            if d % 4 == 0 {
                                (v0.wrapping_add(self.sk[d / 4][2 * j]),
                                 v1.wrapping_add(self.sk[d / 4][2 * j + 1]))
                            } else {
                                (v0, v1)
                            };
                        let r = $rot[d % 8][j];
                        let (f0, f1) = mix(r, (e0, e1));
                        let (pi0, pi1) =
                            ($perm[2 * j], $perm[2 * j + 1]);
                        v[pi0] = f0;
                        v[pi1] = f1;
                    }
                }

                for i in 0..$n_w {
                    v[i] = v[i].wrapping_add(self.sk[$rounds / 4][i]);
                }

                write_u64v_le(block.as_mut_slice(), &v);
            }

            fn decrypt_block(&self, block: &mut GenericArray<u8, Self::BlockSize>) {
                let mut v = [0u64; $n_w];
                read_u64v_le(&mut v, block.as_slice());

                for i in 0..$n_w {
                    v[i] = v[i].wrapping_sub(self.sk[$rounds / 4][i]);
                }

                for d in (0..$rounds).rev() {
                    let v_tmp = v.clone();
                    for j in 0..($n_w / 2) {
                        let (inv_pi0, inv_pi1) =
                            ($perm[2 * j], $perm[2 * j + 1]);
                        let (f0, f1) = (v_tmp[inv_pi0], v_tmp[inv_pi1]);
                        let r = $rot[d % 8][j];
                        let (e0, e1) = inv_mix(r, (f0, f1));
                        let (v0, v1) =
                            if d % 4 == 0 {
                                (e0.wrapping_sub(self.sk[d / 4][2 * j]),
                                 e1.wrapping_sub(self.sk[d / 4][2 * j + 1]))
                             } else {
                                 (e0, e1)
                             };
                        v[2 * j] = v0;
                        v[2 * j + 1] = v1;
                    }
                }

                write_u64v_le(block.as_mut_slice(), &v);
            }
        }
    )
);

impl_threefish!(Threefish256, 72, 4, U32, R_256, P_256);
impl_threefish!(Threefish512, 72, 8, U64, R_512, P_512);
impl_threefish!(Threefish1024, 80, 16, U128, R_1024, P_1024);