1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use crate::core::*;
use crate::renderer::*;

///
/// Similar to [PhysicalMaterial] except that rendering happens in two stages which produces the same result, but is more efficient for complex scenes.
/// This material does not support transparency but does support [alpha cutout](DeferredPhysicalMaterial::alpha_cutout).
///
/// The first stage renders geometry information to a [RenderTarget] and the second stage uses this render target to apply lighting based on the geometry information which means the expensive lighting calculations are only done once per pixel.
/// The [RenderTarget::render], [ColorTarget::render] or [DepthTarget::render] methods all support the two stages required by this material, so just pass the [Object] with this material applied into one of these methods.
/// However, it is not possible to use the [Object::render] method to render a [Geometry] with this material directly to the screen.
/// Instead render the object into a [RenderTarget] consisting of a [Texture2DArray] with three RGBA u8 layers as color target and a [DepthTexture2D] as depth target.
/// Then call the [DeferredPhysicalMaterial::lighting_pass] method with these textures to render to the screen.
///
#[derive(Clone)]
pub struct DeferredPhysicalMaterial {
    /// Name.
    pub name: String,
    /// Albedo base color, also called diffuse color.
    pub albedo: Srgba,
    /// Texture with albedo base colors, also called diffuse color.
    /// The colors are assumed to be in linear sRGB (`RgbU8`), linear sRGB with an alpha channel (`RgbaU8`) or HDR color space.
    pub albedo_texture: Option<Texture2DRef>,
    /// A value in the range `[0..1]` specifying how metallic the material is.
    pub metallic: f32,
    /// A value in the range `[0..1]` specifying how rough the material surface is.
    pub roughness: f32,
    /// Texture containing the metallic and roughness parameters which are multiplied with the [Self::metallic] and [Self::roughness] values in the shader.
    /// The metallic values are sampled from the blue channel and the roughness from the green channel.
    pub metallic_roughness_texture: Option<Texture2DRef>,
    /// A scalar multiplier controlling the amount of occlusion applied from the [Self::occlusion_texture]. A value of 0.0 means no occlusion. A value of 1.0 means full occlusion.
    pub occlusion_strength: f32,
    /// An occlusion map. Higher values indicate areas that should receive full indirect lighting and lower values indicate no indirect lighting.
    /// The occlusion values are sampled from the red channel.
    pub occlusion_texture: Option<Texture2DRef>,
    /// A scalar multiplier applied to each normal vector of the [Self::normal_texture].
    pub normal_scale: f32,
    /// A tangent space normal map, also known as bump map.
    pub normal_texture: Option<Texture2DRef>,
    /// Render states
    pub render_states: RenderStates,
    /// Color of light shining from an object.
    pub emissive: Srgba,
    /// Texture with color of light shining from an object.
    /// The colors are assumed to be in linear sRGB (`RgbU8`), linear sRGB with an alpha channel (`RgbaU8`) or HDR color space.
    pub emissive_texture: Option<Texture2DRef>,
    /// A threshold on the alpha value of the color as a workaround for transparency.
    /// If the alpha value of a pixel touched by an object with this material is less than the threshold, then that object is not contributing to the color of that pixel.
    /// On the other hand, if the alpha value is more than the threshold, then it is contributing fully to that pixel and thereby blocks out everything behind.
    pub alpha_cutout: Option<f32>,
}

impl DeferredPhysicalMaterial {
    ///
    /// Constructs a new deferred physical material from a [CpuMaterial].
    /// If the input contains an [CpuMaterial::occlusion_metallic_roughness_texture], this texture is used for both
    /// [DeferredPhysicalMaterial::metallic_roughness_texture] and [DeferredPhysicalMaterial::occlusion_texture] while any [CpuMaterial::metallic_roughness_texture] or [CpuMaterial::occlusion_texture] are ignored.
    ///
    pub fn new(context: &Context, cpu_material: &CpuMaterial) -> Self {
        let albedo_texture =
            cpu_material
                .albedo_texture
                .as_ref()
                .map(|cpu_texture| match &cpu_texture.data {
                    TextureData::RgbU8(_) | TextureData::RgbaU8(_) => {
                        let mut cpu_texture = cpu_texture.clone();
                        cpu_texture.data.to_linear_srgb();
                        Texture2DRef::from_cpu_texture(context, &cpu_texture)
                    }
                    _ => Texture2DRef::from_cpu_texture(context, cpu_texture),
                });
        let metallic_roughness_texture =
            if let Some(ref cpu_texture) = cpu_material.occlusion_metallic_roughness_texture {
                Some(Texture2DRef::from_cpu_texture(context, cpu_texture))
            } else {
                cpu_material
                    .metallic_roughness_texture
                    .as_ref()
                    .map(|cpu_texture| Texture2DRef::from_cpu_texture(context, cpu_texture))
            };
        let occlusion_texture = if cpu_material.occlusion_metallic_roughness_texture.is_some() {
            metallic_roughness_texture.clone()
        } else {
            cpu_material
                .occlusion_texture
                .as_ref()
                .map(|cpu_texture| Texture2DRef::from_cpu_texture(context, cpu_texture))
        };
        let normal_texture = cpu_material
            .normal_texture
            .as_ref()
            .map(|cpu_texture| Texture2DRef::from_cpu_texture(context, cpu_texture));
        let emissive_texture =
            cpu_material
                .emissive_texture
                .as_ref()
                .map(|cpu_texture| match &cpu_texture.data {
                    TextureData::RgbU8(_) | TextureData::RgbaU8(_) => {
                        let mut cpu_texture = cpu_texture.clone();
                        cpu_texture.data.to_linear_srgb();
                        Texture2DRef::from_cpu_texture(context, &cpu_texture)
                    }
                    _ => Texture2DRef::from_cpu_texture(context, cpu_texture),
                });
        Self {
            name: cpu_material.name.clone(),
            albedo: cpu_material.albedo,
            albedo_texture,
            metallic: cpu_material.metallic,
            roughness: cpu_material.roughness,
            metallic_roughness_texture,
            normal_texture,
            normal_scale: cpu_material.normal_scale,
            occlusion_texture,
            occlusion_strength: cpu_material.occlusion_strength,
            render_states: RenderStates::default(),
            alpha_cutout: cpu_material.alpha_cutout,
            emissive: cpu_material.emissive,
            emissive_texture,
        }
    }

    ///
    /// Constructs a deferred physical material from a physical material.
    ///
    pub fn from_physical_material(physical_material: &PhysicalMaterial) -> Self {
        Self {
            name: physical_material.name.clone(),
            albedo: physical_material.albedo,
            albedo_texture: physical_material.albedo_texture.clone(),
            metallic: physical_material.metallic,
            roughness: physical_material.roughness,
            metallic_roughness_texture: physical_material.metallic_roughness_texture.clone(),
            normal_texture: physical_material.normal_texture.clone(),
            normal_scale: physical_material.normal_scale,
            occlusion_texture: physical_material.occlusion_texture.clone(),
            occlusion_strength: physical_material.occlusion_strength,
            render_states: RenderStates {
                write_mask: WriteMask::default(),
                blend: Blend::Disabled,
                ..physical_material.render_states
            },
            emissive: physical_material.emissive,
            emissive_texture: physical_material.emissive_texture.clone(),
            alpha_cutout: if physical_material.is_transparent {
                Some(0.5)
            } else {
                None
            },
        }
    }
    ///
    /// The second stage of a deferred render call.
    /// Use the [Object::render] method to render the objects with this material into a [RenderTarget] and then call this method with these textures to render to the screen.
    /// See [DeferredPhysicalMaterial] for more information.
    ///
    pub fn lighting_pass(
        context: &Context,
        camera: &Camera,
        geometry_pass_color_texture: ColorTexture,
        geometry_pass_depth_texture: DepthTexture,
        lights: &[&dyn Light],
    ) {
        apply_screen_effect(
            context,
            lighting_pass::LightingPassEffect {},
            camera,
            lights,
            Some(geometry_pass_color_texture),
            Some(geometry_pass_depth_texture),
        );
    }
}

impl FromCpuMaterial for DeferredPhysicalMaterial {
    fn from_cpu_material(context: &Context, cpu_material: &CpuMaterial) -> Self {
        Self::new(context, cpu_material)
    }
}

impl Material for DeferredPhysicalMaterial {
    fn id(&self) -> u16 {
        let mut id = 0b1u16 << 15 | 0b1u16 << 6;
        if self.albedo_texture.is_some() {
            id |= 0b1u16;
        }
        if self.metallic_roughness_texture.is_some() {
            id |= 0b1u16 << 1;
        }
        if self.occlusion_texture.is_some() {
            id |= 0b1u16 << 2;
        }
        if self.normal_texture.is_some() {
            id |= 0b1u16 << 3;
        }
        if self.emissive_texture.is_some() {
            id |= 0b1u16 << 4;
        }
        if self.alpha_cutout.is_some() {
            id |= 0b1u16 << 5;
        }
        id
    }

    fn fragment_shader_source(&self, _lights: &[&dyn Light]) -> String {
        let mut output = include_str!("../../core/shared.frag").to_string();
        if self.albedo_texture.is_some()
            || self.metallic_roughness_texture.is_some()
            || self.normal_texture.is_some()
            || self.occlusion_texture.is_some()
            || self.emissive_texture.is_some()
            || self.alpha_cutout.is_some()
        {
            output.push_str("in vec2 uvs;\n");
            if self.albedo_texture.is_some() {
                output.push_str("#define USE_ALBEDO_TEXTURE;\n");
            }
            if self.metallic_roughness_texture.is_some() {
                output.push_str("#define USE_METALLIC_ROUGHNESS_TEXTURE;\n");
            }
            if self.occlusion_texture.is_some() {
                output.push_str("#define USE_OCCLUSION_TEXTURE;\n");
            }
            if self.normal_texture.is_some() {
                output.push_str("#define USE_NORMAL_TEXTURE;\nin vec3 tang;\nin vec3 bitang;\n");
            }
            if self.emissive_texture.is_some() {
                output.push_str("#define USE_EMISSIVE_TEXTURE;\n");
            }
            if self.alpha_cutout.is_some() {
                output.push_str(
                    format!(
                        "#define ALPHACUT;\nfloat acut = {};",
                        self.alpha_cutout.unwrap()
                    )
                    .as_str(),
                );
            }
        }
        output.push_str(include_str!("shaders/deferred_physical_material.frag"));
        output
    }

    fn fragment_attributes(&self) -> FragmentAttributes {
        FragmentAttributes {
            position: true,
            normal: true,
            color: true,
            uv: self.albedo_texture.is_some()
                || self.metallic_roughness_texture.is_some()
                || self.normal_texture.is_some()
                || self.occlusion_texture.is_some()
                || self.emissive_texture.is_some()
                || self.alpha_cutout.is_some(),
            tangents: self.normal_texture.is_some(),
        }
    }

    fn use_uniforms(&self, program: &Program, _camera: &Camera, _lights: &[&dyn Light]) {
        program.use_uniform("metallic", self.metallic);
        program.use_uniform("roughness", self.roughness);
        program.use_uniform("albedo", self.albedo.to_linear_srgb());
        program.use_uniform("emissive", self.emissive.to_linear_srgb());
        if let Some(ref texture) = self.albedo_texture {
            program.use_texture("albedoTexture", texture);
            program.use_uniform("albedoTexTransform", texture.transformation);
        }
        if let Some(ref texture) = self.metallic_roughness_texture {
            program.use_texture("metallicRoughnessTexture", texture);
            program.use_uniform("metallicRoughnessTexTransform", texture.transformation);
        }
        if let Some(ref texture) = self.occlusion_texture {
            program.use_uniform("occlusionStrength", self.occlusion_strength);
            program.use_uniform("occlusionTexTransform", texture.transformation);
            program.use_texture("occlusionTexture", texture);
        }
        if let Some(ref texture) = self.normal_texture {
            program.use_uniform("normalScale", self.normal_scale);
            program.use_uniform("normalTexTransform", texture.transformation);
            program.use_texture("normalTexture", texture);
        }
        if program.requires_uniform("emissiveTexture") {
            if let Some(ref texture) = self.emissive_texture {
                program.use_uniform("emissiveTexTransform", texture.transformation);
                program.use_texture("emissiveTexture", texture);
            }
        }
    }

    fn render_states(&self) -> RenderStates {
        self.render_states
    }

    fn material_type(&self) -> MaterialType {
        MaterialType::Deferred
    }
}

impl Default for DeferredPhysicalMaterial {
    fn default() -> Self {
        Self {
            name: "default".to_string(),
            albedo: Srgba::WHITE,
            albedo_texture: None,
            metallic: 0.0,
            roughness: 1.0,
            metallic_roughness_texture: None,
            normal_texture: None,
            normal_scale: 1.0,
            occlusion_texture: None,
            occlusion_strength: 1.0,
            render_states: RenderStates::default(),
            alpha_cutout: None,
            emissive: Srgba::BLACK,
            emissive_texture: None,
        }
    }
}