1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use crate::math::*;

///
/// A bounding box that aligns with the x, y and z axes.
///
#[derive(Debug, Copy, Clone)]
pub struct AxisAlignedBoundingBox {
    min: Vec3,
    max: Vec3,
}

impl AxisAlignedBoundingBox {
    fn empty() -> Self {
        Self {
            min: vec3(std::f32::INFINITY, std::f32::INFINITY, std::f32::INFINITY),
            max: vec3(
                std::f32::NEG_INFINITY,
                std::f32::NEG_INFINITY,
                std::f32::NEG_INFINITY,
            ),
        }
    }

    ///
    /// Constructs a new bounding box and expands it such that all of the given positions are contained inside the bounding box.
    /// A position consisting of an x, y and z coordinate corresponds to three consecutive value in the positions array.
    ///
    pub fn new_with_positions(positions: &[f32]) -> Self {
        let mut aabb = Self::empty();
        aabb.expand(positions);
        aabb
    }

    ///
    /// Constructs a new bounding box and expands it such that all of the given positions transformed with the given transformation are contained inside the bounding box.
    /// A position consisting of an x, y and z coordinate corresponds to three consecutive value in the positions array.
    ///
    pub fn new_with_transformed_positions(positions: &[f32], transformation: &Mat4) -> Self {
        let mut aabb = Self::empty();
        aabb.expand_with_transformation(positions, transformation);
        aabb
    }

    ///
    /// Get the minimum coordinate of the bounding box.
    ///
    pub fn min(&self) -> &Vec3 {
        &self.min
    }

    ///
    /// Get the maximum coordinate of the bounding box.
    ///
    pub fn max(&self) -> &Vec3 {
        &self.max
    }

    ///
    /// Expands the bounding box such that all of the given positions are contained inside the bounding box.
    /// A position consisting of an x, y and z coordinate corresponds to three consecutive value in the positions array.
    ///
    pub fn expand(&mut self, positions: &[f32]) {
        for i in 0..positions.len() {
            match i % 3 {
                0 => {
                    self.min.x = f32::min(positions[i], self.min.x);
                    self.max.x = f32::max(positions[i], self.max.x);
                }
                1 => {
                    self.min.y = f32::min(positions[i], self.min.y);
                    self.max.y = f32::max(positions[i], self.max.y);
                }
                2 => {
                    self.min.z = f32::min(positions[i], self.min.z);
                    self.max.z = f32::max(positions[i], self.max.z);
                }
                _ => {
                    unreachable!()
                }
            };
        }
    }

    ///
    /// Expands the bounding box such that all of the given positions transformed with the given transformation are contained inside the bounding box.
    /// A position consisting of an x, y and z coordinate corresponds to three consecutive value in the positions array.
    ///
    pub fn expand_with_transformation(&mut self, positions: &[f32], transformation: &Mat4) {
        for i in 0..positions.len() / 3 {
            let pos = transformation
                * vec4(
                    positions[i * 3],
                    positions[i * 3 + 1],
                    positions[i * 3 + 2],
                    1.0,
                );
            self.min.x = f32::min(pos.x, self.min.x);
            self.max.x = f32::max(pos.x, self.max.x);
            self.min.y = f32::min(pos.y, self.min.y);
            self.max.y = f32::max(pos.y, self.max.y);
            self.min.z = f32::min(pos.z, self.min.z);
            self.max.z = f32::max(pos.z, self.max.z);
        }
    }

    ///
    /// Expand the bounding box such that it also contains the given other bounding box.
    ///
    pub fn expand_with_aabb(&mut self, other: &AxisAlignedBoundingBox) {
        self.min = vec3(
            f32::min(self.min.x, other.min.x),
            f32::min(self.min.y, other.min.y),
            f32::min(self.min.z, other.min.z),
        );
        self.max = vec3(
            f32::max(self.max.x, other.max.x),
            f32::max(self.max.y, other.max.y),
            f32::max(self.max.z, other.max.z),
        );
    }

    ///
    /// Transforms the bounding box by the given transformation.
    ///
    /// **Note:** Use [new_with_transformed_positions](crate::AxisAlignedBoundingBox::new_with_transformed_positions) instead of
    /// [new_with_positions](crate::AxisAlignedBoundingBox::new_with_positions) followed by this method to create a smaller bounding box.
    ///
    pub fn transform(&mut self, transformation: &Mat4) {
        let aabb = Self::new_with_transformed_positions(
            &[
                self.min.x, self.min.y, self.min.z, self.max.x, self.min.y, self.min.z, self.min.x,
                self.max.y, self.min.z, self.min.x, self.min.y, self.max.z, self.min.x, self.max.y,
                self.max.z, self.max.x, self.min.y, self.max.z, self.max.x, self.max.y, self.min.z,
                self.max.x, self.max.y, self.max.z,
            ],
            transformation,
        );
        self.min = aabb.min;
        self.max = aabb.max;
    }
}