1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2019-2021 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::prelude::{
    vec,
    vec::Vec,
};

use crate::{
    build::TypeBuilder,
    form::{
        Form,
        MetaForm,
        PortableForm,
    },
    IntoPortable,
    MetaType,
    Registry,
    TypeInfo,
};
use derive_more::From;
use scale::{
    Decode,
    Encode,
};
#[cfg(feature = "serde")]
use serde::{
    de::DeserializeOwned,
    Deserialize,
    Serialize,
};

mod composite;
mod fields;
mod path;
mod variant;

pub use self::{
    composite::*,
    fields::*,
    path::*,
    variant::*,
};

/// A [`Type`] definition with optional metadata.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde",
    serde(bound(
        serialize = "T::Type: Serialize, T::String: Serialize",
        deserialize = "T::Type: DeserializeOwned, T::String: DeserializeOwned",
    ))
)]
#[cfg_attr(feature = "serde", serde(rename_all = "lowercase"))]
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, From, Debug, Encode, Decode)]
pub struct Type<T: Form = MetaForm> {
    /// The unique path to the type. Can be empty for built-in types
    #[cfg_attr(
        feature = "serde",
        serde(skip_serializing_if = "Path::is_empty", default)
    )]
    path: Path<T>,
    /// The generic type parameters of the type in use. Empty for non generic types
    #[cfg_attr(
        feature = "serde",
        serde(rename = "params", skip_serializing_if = "Vec::is_empty", default)
    )]
    type_params: Vec<T::Type>,
    /// The actual type definition
    #[cfg_attr(feature = "serde", serde(rename = "def"))]
    type_def: TypeDef<T>,
}

impl IntoPortable for Type {
    type Output = Type<PortableForm>;

    fn into_portable(self, registry: &mut Registry) -> Self::Output {
        Type {
            path: self.path.into_portable(registry),
            type_params: registry.register_types(self.type_params),
            type_def: self.type_def.into_portable(registry),
        }
    }
}

impl From<TypeDefPrimitive> for Type {
    fn from(primitive: TypeDefPrimitive) -> Self {
        Self::new(Path::voldemort(), Vec::new(), primitive)
    }
}

impl From<TypeDefArray> for Type {
    fn from(array: TypeDefArray) -> Self {
        Self::new(Path::voldemort(), Vec::new(), array)
    }
}

impl From<TypeDefSequence> for Type {
    fn from(sequence: TypeDefSequence) -> Self {
        Self::new(Path::voldemort(), Vec::new(), sequence)
    }
}

impl From<TypeDefTuple> for Type {
    fn from(tuple: TypeDefTuple) -> Self {
        Self::new(Path::voldemort(), Vec::new(), tuple)
    }
}

impl From<TypeDefPhantom> for Type {
    fn from(phantom: TypeDefPhantom) -> Self {
        Self::new(Path::voldemort(), Vec::new(), phantom)
    }
}

impl Type {
    /// Create a [`TypeBuilder`](`crate::build::TypeBuilder`) the public API for constructing a [`Type`]
    pub fn builder() -> TypeBuilder {
        TypeBuilder::default()
    }

    pub(crate) fn new<I, D>(path: Path, type_params: I, type_def: D) -> Self
    where
        I: IntoIterator<Item = MetaType>,
        D: Into<TypeDef>,
    {
        Self {
            path,
            type_params: type_params.into_iter().collect(),
            type_def: type_def.into(),
        }
    }
}

impl<T> Type<T>
where
    T: Form,
{
    /// Returns the path of the type
    pub fn path(&self) -> &Path<T> {
        &self.path
    }

    /// Returns the generic type parameters of the type
    pub fn type_params(&self) -> &[T::Type] {
        &self.type_params
    }

    /// Returns the definition of the type
    pub fn type_def(&self) -> &TypeDef<T> {
        &self.type_def
    }
}

/// The possible types a SCALE encodable Rust value could have.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde",
    serde(bound(
        serialize = "T::Type: Serialize, T::String: Serialize",
        deserialize = "T::Type: DeserializeOwned, T::String: DeserializeOwned",
    ))
)]
#[cfg_attr(feature = "serde", serde(rename_all = "lowercase"))]
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, From, Debug, Encode, Decode)]
pub enum TypeDef<T: Form = MetaForm> {
    /// A composite type (e.g. a struct or a tuple)
    Composite(TypeDefComposite<T>),
    /// A variant type (e.g. an enum)
    Variant(TypeDefVariant<T>),
    /// A sequence type with runtime known length.
    Sequence(TypeDefSequence<T>),
    /// An array type with compile-time known length.
    Array(TypeDefArray<T>),
    /// A tuple type.
    Tuple(TypeDefTuple<T>),
    /// A Rust primitive type.
    Primitive(TypeDefPrimitive),
    /// A PhantomData type.
    Phantom(TypeDefPhantom<T>),
}

impl IntoPortable for TypeDef {
    type Output = TypeDef<PortableForm>;

    fn into_portable(self, registry: &mut Registry) -> Self::Output {
        match self {
            TypeDef::Composite(composite) => composite.into_portable(registry).into(),
            TypeDef::Variant(variant) => variant.into_portable(registry).into(),
            TypeDef::Sequence(sequence) => sequence.into_portable(registry).into(),
            TypeDef::Array(array) => array.into_portable(registry).into(),
            TypeDef::Tuple(tuple) => tuple.into_portable(registry).into(),
            TypeDef::Primitive(primitive) => primitive.into(),
            TypeDef::Phantom(phantom) => phantom.into_portable(registry).into(),
        }
    }
}

/// A primitive Rust type.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "lowercase"))]
pub enum TypeDefPrimitive {
    /// `bool` type
    Bool,
    /// `char` type
    Char,
    /// `str` type
    Str,
    /// `u8`
    U8,
    /// `u16`
    U16,
    /// `u32`
    U32,
    /// `u64`
    U64,
    /// `u128`
    U128,
    /// 256 bits unsigned int (no rust equivalent)
    U256,
    /// `i8`
    I8,
    /// `i16`
    I16,
    /// `i32`
    I32,
    /// `i64`
    I64,
    /// `i128`
    I128,
    /// 256 bits signed int (no rust equivalent)
    I256,
}

/// An array type.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct TypeDefArray<T: Form = MetaForm> {
    /// The length of the array type.
    len: u32,
    /// The element type of the array type.
    #[cfg_attr(feature = "serde", serde(rename = "type"))]
    type_param: T::Type,
}

impl IntoPortable for TypeDefArray {
    type Output = TypeDefArray<PortableForm>;

    fn into_portable(self, registry: &mut Registry) -> Self::Output {
        TypeDefArray {
            len: self.len,
            type_param: registry.register_type(&self.type_param),
        }
    }
}

impl TypeDefArray {
    /// Creates a new array type.
    pub fn new(len: u32, type_param: MetaType) -> Self {
        Self { len, type_param }
    }
}

#[allow(clippy::len_without_is_empty)]
impl<T> TypeDefArray<T>
where
    T: Form,
{
    /// Returns the length of the array type.
    pub fn len(&self) -> u32 {
        self.len
    }

    /// Returns the element type of the array type.
    pub fn type_param(&self) -> &T::Type {
        &self.type_param
    }
}

/// A type to refer to tuple types.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde",
    serde(bound(
        serialize = "T::Type: Serialize, T::String: Serialize",
        deserialize = "T::Type: DeserializeOwned, T::String: DeserializeOwned",
    ))
)]
#[cfg_attr(feature = "serde", serde(transparent))]
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Debug)]
pub struct TypeDefTuple<T: Form = MetaForm> {
    /// The types of the tuple fields.
    fields: Vec<T::Type>,
}

impl IntoPortable for TypeDefTuple {
    type Output = TypeDefTuple<PortableForm>;

    fn into_portable(self, registry: &mut Registry) -> Self::Output {
        TypeDefTuple {
            fields: registry.register_types(self.fields),
        }
    }
}

impl TypeDefTuple {
    /// Creates a new tuple type definition from the given types.
    pub fn new<T>(type_params: T) -> Self
    where
        T: IntoIterator<Item = MetaType>,
    {
        Self {
            fields: type_params.into_iter().collect(),
        }
    }

    /// Creates a new unit tuple to represent the unit type, `()`.
    pub fn unit() -> Self {
        Self::new(vec![])
    }
}

impl<T> TypeDefTuple<T>
where
    T: Form,
{
    /// Returns the types of the tuple fields.
    pub fn fields(&self) -> &[T::Type] {
        &self.fields
    }
}

/// A type to refer to a sequence of elements of the same type.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Debug)]
pub struct TypeDefSequence<T: Form = MetaForm> {
    /// The element type of the sequence type.
    #[cfg_attr(feature = "serde", serde(rename = "type"))]
    type_param: T::Type,
}

impl IntoPortable for TypeDefSequence {
    type Output = TypeDefSequence<PortableForm>;

    fn into_portable(self, registry: &mut Registry) -> Self::Output {
        TypeDefSequence {
            type_param: registry.register_type(&self.type_param),
        }
    }
}

impl TypeDefSequence {
    /// Creates a new sequence type.
    ///
    /// Use this constructor if you want to instantiate from a given meta type.
    pub fn new(type_param: MetaType) -> Self {
        Self { type_param }
    }

    /// Creates a new sequence type.
    ///
    /// Use this constructor if you want to instantiate from a given
    /// compile-time type.
    pub fn of<T>() -> Self
    where
        T: TypeInfo + 'static,
    {
        Self::new(MetaType::new::<T>())
    }
}

impl<T> TypeDefSequence<T>
where
    T: Form,
{
    /// Returns the element type of the sequence type.
    pub fn type_param(&self) -> &T::Type {
        &self.type_param
    }
}

/// A type describing a `PhantomData<T>` type.
///
/// In the context of SCALE encoded types, including `PhantomData<T>` types in
/// the type info  might seem surprising. The reason to include this information
/// is that there could be situations where it's useful and because removing
/// `PhantomData` items from the derive input quickly becomes a messy
/// syntax-level hack (see PR https://github.com/tetcoin/tetsy-scale-info/pull/31).
/// Instead we take the same approach as `tetsy-scale-codec` where users are
/// required to explicitly skip fields that cannot be represented in SCALE
/// encoding, using the `#[codec(skip)]` attribute.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Encode, Decode, Debug)]
pub struct TypeDefPhantom<T: Form = MetaForm> {
    /// The PhantomData type parameter
    #[cfg_attr(feature = "serde", serde(rename = "type"))]
    type_param: T::Type,
}

impl IntoPortable for TypeDefPhantom {
    type Output = TypeDefPhantom<PortableForm>;

    fn into_portable(self, registry: &mut Registry) -> Self::Output {
        TypeDefPhantom {
            type_param: registry.register_type(&self.type_param),
        }
    }
}

impl TypeDefPhantom {
    /// Creates a new phantom type definition.
    pub fn new(type_param: MetaType) -> Self {
        Self { type_param }
    }
}

impl<T> TypeDefPhantom<T>
where
    T: Form,
{
    /// Returns the type parameter type of the phantom type.
    pub fn type_param(&self) -> &T::Type {
        &self.type_param
    }
}