1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright 2019 The Tari Project
//
// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
// following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
// disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
// following disclaimer in the documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use crate::keys::{PublicKey, SecretKey};
use digest::Digest;
use std::{ops::Mul, prelude::v1::Vec};
use thiserror::Error;

//----------------------------------------------   Constants       ------------------------------------------------//
pub const MAX_SIGNATURES: usize = 32768; // If you need more, call customer support

//----------------------------------------------   Error Codes     ------------------------------------------------//
#[derive(Clone, Debug, Error, PartialEq, Eq)]
pub enum MuSigError {
    #[error("The number of public nonces must match the number of public keys in the joint key")]
    MismatchedNonces,
    #[error("The number of partial signatures must match the number of public keys in the joint key")]
    MismatchedSignatures,
    #[error("The aggregate signature did not verify")]
    InvalidAggregateSignature,
    #[error("A partial signature did not validate: {0}")]
    InvalidPartialSignature(usize),
    #[error("The participant list must be sorted before making this call")]
    NotSorted,
    #[error("The participant key is not in the list")]
    ParticipantNotFound,
    #[error("An attempt was made to perform an invalid MuSig state transition")]
    InvalidStateTransition,
    #[error("An attempt was made to add a duplicate public key to a MuSig signature")]
    DuplicatePubKey,
    #[error("There are too many parties in the MuSig signature")]
    TooManyParticipants,
    #[error("There are too few parties in the MuSig signature")]
    NotEnoughParticipants,
    #[error("A nonce hash is missing")]
    MissingHash,
    #[error("The message to be signed can only be set once")]
    MessageAlreadySet,
    #[error("The message to be signed MUST be set before the final nonce is added to the MuSig ceremony")]
    MissingMessage,
    #[error("The message to sign is invalid. have you hashed it?")]
    InvalidMessage,
    #[error("MuSig requires a hash function with a 32 byte digest")]
    IncompatibleHashFunction,
}

//----------------------------------------------     Joint Key     ------------------------------------------------//

/// The JointKey is a modified public key used in Signature aggregation schemes like MuSig which is not susceptible
/// to Rogue Key attacks.
///
/// A joint key is calculated from _n_ participants by having each of them calculate:
/// $$
///   L = H(P_1 || P_2 || \dots || P_n)
///   X = \sum H(L || P_i)P_i
///   X_i = k_i H(L || P_i).G
/// $$
/// Concrete implementations of JointKey will also need to implement the MultiScalarMul trait, which allows them to
/// provide implementation-specific optimisations for dot-product operations.
pub struct JointKey<P, K>
where
    K: SecretKey,
    P: PublicKey<K = K>,
{
    pub_keys: Vec<P>,
    musig_scalars: Vec<K>,
    common: K,
    joint_pub_key: P,
}

pub struct JointKeyBuilder<P, K>
where
    K: SecretKey,
    P: PublicKey<K = K>,
{
    num_signers: usize,
    pub_keys: Vec<P>,
}

impl<K, P> JointKeyBuilder<P, K>
where
    K: SecretKey + Mul<P, Output = P>,
    P: PublicKey<K = K>,
{
    /// Create a new JointKey instance containing no participant keys, or return `TooManyParticipants` if n exceeds
    /// `MAX_SIGNATURES`
    pub fn new(n: usize) -> Result<JointKeyBuilder<P, K>, MuSigError> {
        if n > MAX_SIGNATURES {
            return Err(MuSigError::TooManyParticipants);
        }
        if n == 0 {
            return Err(MuSigError::NotEnoughParticipants);
        }
        Ok(JointKeyBuilder {
            pub_keys: Vec::with_capacity(n),
            num_signers: n,
        })
    }

    /// The number of parties in the Joint key
    pub fn num_signers(&self) -> usize {
        self.num_signers
    }

    /// Add a participant signer's public key to the JointKey
    pub fn add_key(&mut self, pub_key: P) -> Result<usize, MuSigError> {
        if self.key_exists(&pub_key) {
            return Err(MuSigError::DuplicatePubKey);
        }
        // push panics on int overflow, so catch this here
        let n = self.pub_keys.len();
        if n >= self.num_signers {
            return Err(MuSigError::TooManyParticipants);
        }
        self.pub_keys.push(pub_key);
        Ok(self.pub_keys.len())
    }

    /// Checks whether the given public key is in the participants list
    pub fn key_exists(&self, key: &P) -> bool {
        self.pub_keys.iter().any(|v| v == key)
    }

    /// Checks whether the number of pub_keys is equal to `num_signers`
    pub fn is_full(&self) -> bool {
        self.pub_keys.len() == self.num_signers
    }

    /// Add all the keys in `keys` to the participant list.
    pub fn add_keys<T: IntoIterator<Item = P>>(&mut self, keys: T) -> Result<usize, MuSigError> {
        for k in keys {
            self.add_key(k)?;
        }
        Ok(self.pub_keys.len())
    }

    /// Produce a sorted, immutable joint Musig public key from the gathered set of conventional public keys
    pub fn build<D: Digest>(mut self) -> Result<JointKey<P, K>, MuSigError> {
        if !self.is_full() {
            return Err(MuSigError::NotEnoughParticipants);
        }
        self.sort_keys();
        let common = self.calculate_common::<D>();
        let musig_scalars = self.calculate_musig_scalars::<D>(&common);
        let joint_pub_key = JointKeyBuilder::calculate_joint_key::<D>(&musig_scalars, &self.pub_keys);
        Ok(JointKey {
            pub_keys: self.pub_keys,
            musig_scalars,
            joint_pub_key,
            common,
        })
    }

    /// Utility function to calculate \\( \ell = H(P_1 || ... || P_n) \mod p \\)
    /// # Panics
    /// If the SecretKey implementation cannot construct a valid key from the given hash, the function will panic.
    /// You should ensure that the SecretKey constructor protects against failures and that the hash digest given
    /// produces a byte array of the correct length.
    fn calculate_common<D: Digest>(&self) -> K {
        let mut common = D::new();
        for k in self.pub_keys.iter() {
            common = common.chain(k.as_bytes());
        }
        K::from_bytes(&common.result())
            .expect("Could not calculate Scalar from hash value. Your crypto/hash combination might be inconsistent")
    }

    /// Private utility function to calculate \\( H(\ell || P_i) \mod p \\)
    /// # Panics
    /// If the SecretKey implementation cannot construct a valid key from the given hash, the function will panic.
    /// You should ensure that the SecretKey constructor protects against failures and that the hash digest given
    /// produces a byte array of the correct length.
    fn calculate_partial_key<D: Digest>(common: &[u8], pubkey: &P) -> K {
        let k = D::new().chain(common).chain(pubkey.as_bytes()).result();
        K::from_bytes(&k)
            .expect("Could not calculate Scalar from hash value. Your crypto/hash combination might be inconsistent")
    }

    /// Sort the keys in the participant list. The order is determined by the `Ord` trait of the concrete public key
    /// implementation used to construct the joint key.
    /// **NB:** Sorting the keys will, usually, change the value of the joint key!
    fn sort_keys(&mut self) {
        self.pub_keys.sort_unstable();
    }

    /// Utility function that produces the vector of MuSig private key modifiers, \\( a_i = H(\ell || P_i) \\)
    fn calculate_musig_scalars<D: Digest>(&self, common: &K) -> Vec<K> {
        self.pub_keys
            .iter()
            .map(|p| JointKeyBuilder::calculate_partial_key::<D>(common.as_bytes(), p))
            .collect()
    }

    /// Calculate the value of the Joint MuSig public key. **NB**: you should usually sort the participant's keys
    /// before calculating the joint key.
    fn calculate_joint_key<D: Digest>(scalars: &[K], pub_keys: &[P]) -> P {
        P::batch_mul(scalars, pub_keys)
    }
}

impl<P, K> JointKey<P, K>
where
    K: SecretKey,
    P: PublicKey<K = K>,
{
    /// Return the index of the given key in the joint key participants list. If the key isn't in the list, returns
    /// `Err(ParticipantNotFound)`
    pub fn index_of(&self, pubkey: &P) -> Result<usize, MuSigError> {
        match self.pub_keys.binary_search(pubkey) {
            Ok(i) => Ok(i),
            Err(_) => Err(MuSigError::ParticipantNotFound),
        }
    }

    #[inline]
    pub fn size(&self) -> usize {
        self.pub_keys.len()
    }

    #[inline]
    pub fn get_pub_keys(&self, index: usize) -> &P {
        &self.pub_keys[index]
    }

    #[inline]
    pub fn get_musig_scalar(&self, index: usize) -> &K {
        &self.musig_scalars[index]
    }

    #[inline]
    pub fn get_common(&self) -> &K {
        &self.common
    }

    #[inline]
    pub fn get_joint_pubkey(&self) -> &P {
        &self.joint_pub_key
    }
}