1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use std::convert::Infallible;

use serde::{Deserialize, Serialize};
use udgraph::graph::{Node, Sentence};

use crate::lemma::edit_tree::EditTree;
use crate::lemma::EncodeError;
use crate::{EncodingProb, SentenceDecoder, SentenceEncoder};

/// Back-off strategy.
///
/// This is the strategy that will be used when an edit tree
/// could not be applied.
#[serde(rename_all = "lowercase")]
#[derive(Clone, Copy, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub enum BackoffStrategy {
    Nothing,
    Form,
}

/// Edit tree-based lemma encoder.
///
/// This encoder encodes a lemma as an edit tree that is applied to an
/// unlemmatized form.
#[derive(Clone, Copy, Debug, Deserialize, Serialize)]
pub struct EditTreeEncoder {
    backoff_strategy: BackoffStrategy,
}

impl EditTreeEncoder {
    pub fn new(backoff_strategy: BackoffStrategy) -> Self {
        EditTreeEncoder { backoff_strategy }
    }
}

impl SentenceDecoder for EditTreeEncoder {
    type Encoding = EditTree;

    type Error = Infallible;

    fn decode<S>(&self, labels: &[S], sentence: &mut Sentence) -> Result<(), Self::Error>
    where
        S: AsRef<[EncodingProb<Self::Encoding>]>,
    {
        assert_eq!(
            labels.len(),
            sentence.len() - 1,
            "Labels and sentence length mismatch"
        );

        for (token, token_labels) in sentence
            .iter_mut()
            .filter_map(Node::token_mut)
            .zip(labels.iter())
        {
            if let Some(label) = token_labels.as_ref().get(0) {
                let form = token.form().chars().collect::<Vec<_>>();

                if let Some(lemma) = label.encoding().apply(&form) {
                    // If the edit script can be applied, use the
                    // resulting lemma...
                    let lemma = lemma.into_iter().collect::<String>();
                    token.set_lemma(Some(lemma));
                } else if let BackoffStrategy::Form = self.backoff_strategy {
                    // .. if the edit script failed and the back-off
                    // strategy is to set the form as the lemma,
                    // do so.
                    token.set_lemma(Some(token.form().to_owned()));
                }
            }
        }

        Ok(())
    }
}

impl SentenceEncoder for EditTreeEncoder {
    type Encoding = EditTree;

    type Error = EncodeError;

    fn encode(&self, sentence: &Sentence) -> Result<Vec<Self::Encoding>, Self::Error> {
        let mut encoding = Vec::with_capacity(sentence.len() - 1);

        for token in sentence.iter().filter_map(Node::token) {
            let lemma = token
                .lemma()
                .or_else(|| {
                    if token.form() == "_" {
                        Some("_").to_owned()
                    } else {
                        None
                    }
                })
                .ok_or_else(|| EncodeError::MissingLemma {
                    form: token.form().to_owned(),
                })?;

            let edit_tree = EditTree::create_tree(
                &token.form().chars().collect::<Vec<_>>(),
                &lemma.chars().collect::<Vec<_>>(),
            )
            .ok_or_else(|| EncodeError::NoEditTree {
                form: token.form().to_string(),
                lemma: lemma.to_string(),
            })?;

            encoding.push(edit_tree);
        }

        Ok(encoding)
    }
}

#[cfg(test)]
mod tests {
    use std::iter;

    use udgraph::graph::{Node, Sentence};
    use udgraph::token::{Token, TokenBuilder};

    use super::{BackoffStrategy, EditTree, EditTreeEncoder};
    use crate::{EncodingProb, SentenceDecoder, SentenceEncoder};

    fn encode_and_wrap(
        encoder: &EditTreeEncoder,
        sent: &Sentence,
    ) -> Vec<Vec<EncodingProb<EditTree>>> {
        encoder
            .encode(&sent)
            .unwrap()
            .into_iter()
            .map(|encoding| vec![EncodingProb::new(encoding, 1.0)])
            .collect::<Vec<_>>()
    }

    fn sentence_from_forms(tokens: &[&str]) -> Sentence {
        tokens.iter().map(|t| Token::new(*t)).collect()
    }

    fn sentence_from_pairs(token_lemmas: &[(&str, &str)]) -> Sentence {
        token_lemmas
            .iter()
            .map(|(t, l)| TokenBuilder::new(*t).lemma(*l).into())
            .collect()
    }

    #[test]
    fn encoder_decoder_roundtrip() {
        let sent_encode =
            sentence_from_pairs(&[("hij", "hij"), ("heeft", "hebben"), ("gefietst", "fietsen")]);

        let encoder = EditTreeEncoder::new(BackoffStrategy::Nothing);
        let labels = encode_and_wrap(&encoder, &sent_encode);

        let mut sent_decode = sentence_from_forms(&["hij", "heeft", "gefietst"]);
        encoder.decode(&labels, &mut sent_decode).unwrap();

        assert_eq!(sent_encode, sent_decode);
    }

    #[test]
    fn decoder_backoff_nothing() {
        let sent_encode = sentence_from_pairs(&[
            ("kinderen", "kind"),
            ("hadden", "hebben"),
            ("gefietst", "fietsen"),
        ]);
        let encoder = EditTreeEncoder::new(BackoffStrategy::Nothing);
        let labels = encode_and_wrap(&encoder, &sent_encode);

        let mut sent_decode = sentence_from_forms(&["het", "is", "anders"]);
        encoder.decode(&labels, &mut sent_decode).unwrap();

        assert!(sent_decode
            .iter()
            .filter_map(Node::token)
            .map(Token::lemma)
            .all(|lemma| lemma.is_none()));
    }

    #[test]
    fn decoder_backoff_form() {
        let sent_encode = sentence_from_pairs(&[
            ("kinderen", "kind"),
            ("hadden", "hebben"),
            ("gefietst", "fietsen"),
        ]);
        let encoder = EditTreeEncoder::new(BackoffStrategy::Form);
        let labels = encode_and_wrap(&encoder, &sent_encode);

        let mut sent_decode = sentence_from_forms(&["het", "is", "anders"]);
        encoder.decode(&labels, &mut sent_decode).unwrap();

        for token in sent_decode.iter().filter_map(Node::token) {
            assert_eq!(token.lemma(), Some(token.form()));
        }
    }

    #[test]
    fn handles_underscore_form_lemma() {
        let sentence: Sentence = iter::once(TokenBuilder::new("_").into()).collect();
        let encoder = EditTreeEncoder::new(BackoffStrategy::Form);
        let labels = encode_and_wrap(&encoder, &sentence);

        let mut sent_decode = sentence_from_forms(&["_"]);
        encoder.decode(&labels, &mut sent_decode).unwrap();

        assert_eq!(sent_decode, sentence_from_pairs(&[("_", "_")]));
    }

    #[test]
    fn rejects_empty_lemma_with_nonempty_form() {
        let sentence = sentence_from_forms(&["iets"]);
        let encoder = EditTreeEncoder::new(BackoffStrategy::Nothing);
        assert!(encoder.encode(&sentence).is_err());
    }
}