1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//! A single-threaded busy-wait executor.
//!
//! All tasks are cooperatively run on the same thread and no I/O polling is
//! done.

extern crate futures;
extern crate index_queue;
extern crate vec_arena;
extern crate void;

use std::fmt;
use std::cell::RefCell;
use std::rc::{self, Rc};
use std::sync::{Arc, Mutex};
use futures::executor::{self, Spawn, Unpark};
use futures::{Async, Future, Poll, future, task};
use index_queue::IndexQueue;
use vec_arena::Arena;
use void::Void;

/// Helper struct for writing `Debug` implementations.
struct DebugWith<F>(F);

impl<F: Fn(&mut fmt::Formatter) -> fmt::Result> fmt::Debug for DebugWith<F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0(f)
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct SpawnId(usize);

impl SpawnId {
    fn from_queue_index(queue_index: usize) -> Self {
        debug_assert_ne!(queue_index, !0);
        SpawnId(queue_index)
    }

    fn to_queue_index(self) -> usize {
        self.0
    }

    fn main() -> Self {
        Self::from_queue_index(0)
    }

    fn aux(aux_index: usize) -> Self {
        debug_assert!(aux_index < !0 - 1);
        Self::from_queue_index(aux_index + 1)
    }

    fn to_aux(self) -> Option<usize> {
        if self == Self::main() {
            None
        } else {
            Some(self.to_queue_index() - 1)
        }
    }
}

// we need atomics here because Unpark requires Send + Sync :/
struct TicketInner {
    // keep the id out of the 'Option': this helps debuggability (so we know
    // which spawn this ticket belongs to) and also allows null-Arc optimizations
    id: SpawnId,
    queue: Option<Arc<Mutex<IndexQueue>>>,
}

impl fmt::Debug for TicketInner {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let name = if self.queue.is_none() {
            "TicketInner[inactive]"
        } else {
            "TicketInner"
        };
        f.debug_tuple(name)
            .field(&self.id.to_queue_index())
            .finish()
    }
}

#[derive(Debug)]
struct Ticket(Mutex<TicketInner>);

impl Ticket {
    fn deactivate(&self) {
        let inner = self.0.lock().unwrap();
        inner.queue.as_ref().map(|queue| {
            queue.lock().unwrap().remove(inner.id.to_queue_index());
        });
    }
}

impl Unpark for Ticket {
    fn unpark(&self) {
        let inner = self.0.lock().unwrap();
        inner.queue.as_ref().map(|queue| {
            queue.lock().unwrap().push_back(inner.id.to_queue_index());
        });
    }
}

struct Spawned<F> {
    spawn: Spawn<F>,
    ticket: Arc<Ticket>,
}

impl<F> fmt::Debug for Spawned<F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("Spawned")
            .field(&self.ticket)
            .finish()
    }
}

type SpawnedBox<'a> = Spawned<Box<Future<Item=(), Error=Void> + 'a>>;

#[derive(Default)]
struct Inner<'a> {
    spawns: Arena<Option<SpawnedBox<'a>>>,
    queue: Arc<Mutex<IndexQueue>>,
}

impl<'a> Inner<'a> {
    fn new_ticket(&self, id: SpawnId) -> Arc<Ticket> {
        let ticket = Arc::new(Ticket(Mutex::new(TicketInner {
            id: id,
            queue: Some(self.queue.clone()),
        })));
        ticket.unpark();
        ticket
    }
}

impl<'a> fmt::Debug for Inner<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Inner")
            .field("spawns", &DebugWith(|f: &mut fmt::Formatter| {
                f.debug_list().entries(self.spawns.iter().map(|(i, _)| i))
                    .finish()
            }))
            .field("queue", &self.queue)
            .finish()
    }
}

/// A cloneable handle to a [`Core`](struct.Core.html).
///
/// Cloned handles always refer to the same `Core` instance.
///
/// `Handle` can be used to `spawn` tasks even when the `Core` is running.
#[derive(Debug, Clone)]
pub struct Handle<'a>(rc::Weak<RefCell<Inner<'a>>>);

impl<'a> Handle<'a> {
    /// Spawn a new task into the executor.  The spawned tasks are executed
    /// when [`run`](struct.Core.html#method.run) is called.
    pub fn spawn<F: Future<Item=(), Error=Void> + 'a>(&self, f: F) {
        let inner = match self.0.upgrade() {
            Some(inner) => inner,
            None => return,
        };
        let mut inner = inner.borrow_mut();
        let aux = inner.spawns.insert(None);
        let ticket = inner.new_ticket(SpawnId::aux(aux));
        inner.spawns[aux] = Some(Spawned {
            spawn: executor::spawn(Box::new(f) as Box<_>),
            ticket: ticket,
        });
    }
}

/// Unpark the current task if the `status` is `Some(Ok(NotReady))` or `None`.
fn yield_turn<T, E>(status: Option<Poll<T, E>>) -> Poll<T, E> {
    let result = status.unwrap_or(Ok(Async::NotReady));
    if let Ok(Async::NotReady) = result {
        task::park().unpark();
    }
    result
}

/// A combined `Core` and future `F` that can be run.
#[derive(Debug)]
pub struct RunFuture<'b, 'a: 'b, F> {
    core: &'b mut Core<'a>,
    spawned: Spawned<F>,
}

impl<'b, 'a, F: Future> RunFuture<'b, 'a, F> {
    /// Run the future `F` on the current thread until completion.  Spawned
    /// tasks are run concurrently as well, but may or may not complete.
    pub fn run(&mut self) -> Result<F::Item, F::Error> {
        loop {
            match self.turn().unwrap_or(Ok(Async::NotReady))? {
                Async::Ready(x) => return Ok(x),
                Async::NotReady => continue,
            }
        }
    }

    /// Perform one iteration of the executor loop.  Returns `None` if all
    /// tasks are parked (no apparent progress was made).
    pub fn turn(&mut self) -> Option<Poll<F::Item, F::Error>> {
        self.core.turn_with(Ok(&mut self.spawned))
    }
}

impl<'b, 'a, F: Future> Future for RunFuture<'b, 'a, F> {
    type Item = F::Item;
    type Error = F::Error;
    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        yield_turn(self.turn())
    }
}

/// The task executor.
#[derive(Debug, Default)]
pub struct Core<'a>(Rc<RefCell<Inner<'a>>>);

impl<'a> Core<'a> {
    /// Create a [`Handle`](struct.Handle.html) to this executor, which can be
    /// used to [`spawn`](struct.Handle.html#method.spawn) additional tasks.
    pub fn handle(&self) -> Handle<'a> {
        Handle(Rc::downgrade(&self.0))
    }

    /// Run the given future on the current thread until completion.  Spawned
    /// tasks are run concurrently as well, but may or may not complete.
    ///
    /// This is equivalent to `self.run_future().run()`.
    pub fn run<F: Future>(&mut self, f: F) -> Result<F::Item, F::Error> {
        self.run_future(f).run()
    }

    /// Like [`run`](#method.run), but creates a
    /// [`RunFuture`](struct.RunFuture.html) object, which allows one to
    /// manually [`turn`](struct.RunFuture.html#method.turn) the executor.
    pub fn run_future<'b, F: Future>(&'b mut self, f: F)
                                     -> RunFuture<'b, 'a, F> {
        let ticket = {
            let inner = self.0.borrow();
            // if the main spawn is still queued somehow (because the user did
            // not complete a previous RunFuture), remove it
            let id = SpawnId::main();
            inner.queue.lock().unwrap().remove(id.to_queue_index());
            inner.new_ticket(id)
        };
        RunFuture {
            core: self,
            spawned: Spawned {
                spawn: executor::spawn(f),
                ticket: ticket,
            },
        }
    }

    /// Perform one iteration of the executor loop.  Returns `None` if all
    /// tasks are parked (no apparent progress was made).  Returns
    /// `Some(Ok(Ready(())))` if all spawned tasks have completed.
    pub fn turn(&mut self) -> Option<Poll<(), Void>> {
        self.turn_with::<future::Empty<(), Void>>(Err(()))
    }

    /// Perform one iteration of the executor loop, optionally with a given
    /// main spawn.  Returns `None` if all tasks are parked (no apparent
    /// progress could be made).  If `main` is set to `Err(e)`, returns
    /// `Some(Ok(Ready(e)))` if there are no more spawns.
    fn turn_with<F: Future>(&mut self, main: Result<&mut Spawned<F>, F::Item>)
                            -> Option<Poll<F::Item, F::Error>> {
        let index = {
            let inner = self.0.borrow();
            let popped = inner.queue.lock().unwrap().pop_front();
            match popped {
                None => return if inner.spawns.is_empty() {
                    match main {
                        Err(item) => Some(Ok(Async::Ready(item))),
                        Ok(_) => None
                    }
                } else {
                    None
                },
                Some(index) => index,
            }
        };
        match SpawnId::from_queue_index(index).to_aux() {
            None => {
                match main {
                    Err(_) => Some(Ok(Async::NotReady)),
                    Ok(main) => {
                        let ticket = main.ticket.clone();
                        let poll = main.spawn.poll_future(ticket);
                        if let Ok(Async::Ready(_)) = poll {
                            main.ticket.deactivate();
                        }
                        Some(poll)
                    }
                }
            }
            Some(aux) => {
                let spawned = self.0.borrow_mut().spawns.get_mut(aux)
                    .and_then(|x| x.take());
                if let Some(mut spawned) = spawned {
                    let ticket = spawned.ticket.clone();
                    let poll = spawned.spawn.poll_future(ticket);
                    let mut inner = self.0.borrow_mut();
                    if let Ok(Async::Ready(())) = poll {
                        spawned.ticket.deactivate();
                        inner.spawns.remove(aux);
                    } else {
                        inner.spawns[aux] = Some(spawned);
                    }
                } else {
                    self.0.borrow_mut().spawns.remove(aux);
                }
                Some(Ok(Async::NotReady))
            }
        }
    }
}

impl<'a> Future for Core<'a> {
    type Item = ();
    type Error = Void;
    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        yield_turn(self.turn())
    }
}