1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use bit_vec::BitVec;
use rand::{RngCore, SeedableRng, rngs::StdRng};
use visioncortex::{BinaryImage, ColorImage, PointI32};
use wasm_bindgen::prelude::*;

use symcode::acute32::{Acute32, Acute32SymcodeConfig, AlphabetReader, AlphabetReaderParams, GlyphLabel};
use symcode::interfaces::{Decoder, Finder, FinderElement, Fitter, Reader, Encoder, SymcodeScanner, SymcodeGenerator};
use symcode::math::{into_bitvec, num_bits_to_store};
use crate::{canvas::Canvas, util::console_log_util};
use crate::debugger::{Debugger, render_binary_image_to_canvas};
use super::helper::is_black_hsv;

#[wasm_bindgen]
pub struct Acute32SymcodeMain {
    config: Acute32SymcodeConfig,
    rng: StdRng,
}

impl Default for Acute32SymcodeMain {
    fn default() -> Self {
        Self::new()
    }
}

impl Acute32SymcodeMain {
    const PAYLOAD_BITS: usize = 20;

    pub fn from_config(config: Acute32SymcodeConfig, seed: u64) -> Self {
        Self {
            config,
            rng: StdRng::seed_from_u64(seed),
        }
    }
}

#[wasm_bindgen]
impl Acute32SymcodeMain {

    pub fn new() -> Self {
        let mut config = Acute32SymcodeConfig::default();
        if let Some(debug_canvas) = Canvas::new_from_id("debug") {
            config.debugger = Box::new(Debugger{ debug_canvas });
        }
        Self::from_config(config, 125)
    }

    pub fn seed_rng(&mut self, seed: u64) {
        self.rng = StdRng::seed_from_u64(seed);
    }

    /// Takes the id of the canvas element storing the alphabet.
    pub fn load_alphabet_from_canvas_id(&mut self, canvas_id: &str) {
        let params = AlphabetReaderParams::default();
        let canvas = &match Canvas::new_from_id(canvas_id) {
            Some(c) => c,
            None => panic!("Canvas with id ".to_owned() + canvas_id + " is not found!"),
        };
        let image = canvas
            .get_image_data_as_color_image(0, 0, canvas.width() as u32, canvas.height() as u32)
            .to_binary_image(|c| is_black_hsv(&c.to_hsv()));
        match AlphabetReader::read_alphabet_to_library(image, params, &self.config) {
            Ok(library) => self.config.symbol_library = Box::new(library),
            Err(e) => console_log_util(e),
        }
    }

    pub fn scan_from_canvas_id(&self, canvas_id: &str) -> Result<String, JsValue> {
        if self.config.symbol_library.is_empty() {
            return Err("No templates loaded into the SymcodeScanner instance yet!".into());
        }

        // Stage 0: Prepare the raw input
        let raw_frame = if let Some(canvas) = &Canvas::new_from_id(canvas_id) {
            canvas.get_image_data_as_color_image(0, 0, canvas.width() as u32, canvas.height() as u32)
        } else {
            return Err("Cannot read input image from canvas.".into());
        };

        let symcode = self.scan(raw_frame)?;

        if false {
            let _debug_code_string = format!("{:?}", symcode);
        }

        let decoded_bit_string = self.decode(symcode)?;
        Ok(format!("{:?}", decoded_bit_string))
    }

    pub fn generate_symcode_to_canvas(&self, canvas_id: &str, payload: &str) -> Result<String, JsValue> {
        if payload.len() > Self::PAYLOAD_BITS {
            return Err("Payload has too many bits!".into());
        }

        let result = usize::from_str_radix(payload, 2);
        if result.is_err() {
            return Err("Failed to parse payload as binary number".into());
        }
        let payload = result.unwrap();

        let canvas = if let Some(canvas) = Canvas::new_from_id(canvas_id) {
            canvas
        } else {
            return Err("Code generation: Canvas does not exist.".into());
        };

        let (symcode, ground_truth_code) = self.generate_symcode_with_payload(payload)?;

        if render_binary_image_to_canvas(&canvas, &symcode).is_err() {
            return Err("Cannot render generated symcode to canvas.".into());
        }

        Ok(ground_truth_code)
    }

    pub fn generate_random_symcode_to_canvas(&mut self, canvas_id: &str) -> Result<String, JsValue> {
        let canvas = if let Some(canvas) = Canvas::new_from_id(canvas_id) {
            canvas
        } else {
            return Err("Code generation: Canvas does not exist.".into());
        };
        let (symcode, ground_truth_code) = self.generate_symcode_random()?;

        if render_binary_image_to_canvas(&canvas, &symcode).is_err() {
            return Err("Cannot render generated symcode to canvas.".into());
        }

        Ok(ground_truth_code)
    }

    fn generate_symcode_with_payload(&self, payload: usize) -> Result<(BinaryImage, String), &str> {
        let payload = into_bitvec(payload, Self::PAYLOAD_BITS);
        let payload_bit_string = format!("{:?}", payload);

        let num_symbols = self.config.num_glyphs_in_code();

        let acute32 = Acute32::new(&self.config);
        let symcode_representation = acute32.get_encoder().encode(payload, num_symbols)?;
        let symcode_string = format!("{:?}", symcode_representation);

        let code_image = self.generate(symcode_representation);

        let msg = format!("{}\n{}", symcode_string, payload_bit_string);

        //console_log_util(&msg);

        Ok((code_image, msg)) 
    }

    /// Randomly generate a 20-bit bit string, calculate CRC5 checksum (which is 5 bits)
    /// Then encode the 25-bit bit string into a symcode and generate the code image
    fn generate_symcode_random(&mut self) -> Result<(BinaryImage, String), &str> {
        let symbol_num_bits = num_bits_to_store(GlyphLabel::num_variants());
        let num_symbols = self.config.num_glyphs_in_code();

        // Dummy data
        let payload = BitVec::from_fn(
            symbol_num_bits*num_symbols - 5, // Reserve 5 bits for CRC5 checksum
            |_| { self.rng.next_u32() < (std::u32::MAX >> 1) }
        );
        let payload_bit_string = format!("{:?}", payload);

        let acute32 = Acute32::new(&self.config);
        let symcode_representation = acute32.get_encoder().encode(payload, num_symbols)?;
        let symcode_string = format!("{:?}", symcode_representation);

        let code_image = self.generate(symcode_representation);

        let msg = format!("{}\n{}", symcode_string, payload_bit_string);

        //console_log_util(&msg);

        Ok((code_image, msg))
    }
}

impl SymcodeScanner for Acute32SymcodeMain {
    type SymcodeRepresentation = Vec<GlyphLabel>;

    type Err = JsValue;

    fn scan(&self, image: ColorImage) -> Result<Self::SymcodeRepresentation, Self::Err> {
        let acute32 = Acute32::new(&self.config);

        // Stage 1: Locate finder candidates
        let finder_positions = match acute32.get_finder().find(
            &image
        ) {
            Ok(finder_positions) => finder_positions,
            Err(e) => {
                return Err(("Failed at Stage 1: ".to_owned() + e).into());
            }
        };

        // Stage 2: Fit a perspective transform from the image space to the object space
        let image_to_object = match acute32.get_fitter().fit(
            finder_positions,
            image.width,
            image.height
        ) {
            Ok(image_to_object) => image_to_object,
            Err(e) => {
                return Err(("Failed at Stage 2: ".to_owned() + e).into());
            }
        };

        // Stage 3: Recognize the glyphs
        let symcode_instance = match acute32.get_reader().read(
            image,
            image_to_object
        ) {
            Ok(symcode_instance) => symcode_instance,
            Err(e) => {
                return Err(("Failed at Stage 3: ".to_owned() + e).into());
            }
        };

        Ok(symcode_instance)
    }

    fn decode(&self, symcode: Self::SymcodeRepresentation) -> Result<bit_vec::BitVec, Self::Err> {
        let acute32 = Acute32::new(&self.config);

        // Stage 4: Decode the Symcode
        match acute32.get_decoder().decode(
            symcode
        ) {
            Ok(decoded_symcode) => {
                Ok(decoded_symcode)
            },
            Err(e) => {
                Err(("Failed at Stage 4: ".to_owned() + e).into())
            }
        }
    }
}

impl SymcodeGenerator for Acute32SymcodeMain {
    type SymcodeRepresentation = Vec<GlyphLabel>;

    fn generate(&self, symcode: Self::SymcodeRepresentation) -> BinaryImage {
        let mut symcode_image = BinaryImage::new_w_h(self.config.code_width, self.config.code_height);

        // Put in the finders
        let finder_image = self.config.finder.to_image(self.config.symbol_width, self.config.symbol_height);
        self.config.finder_positions.iter().for_each(|finder_center| {
            let top_left = finder_center.to_point_i32() - PointI32::new((self.config.symbol_width >> 1) as i32, (self.config.symbol_height >> 1) as i32);
            symcode_image.paste_from(&finder_image, top_left);
        });

        // Put in the glyphs
        symcode.iter().enumerate().for_each(|(i, &glyph_label)| {
            if glyph_label != GlyphLabel::Invalid {
                let glyph_top_left = self.config.glyph_anchors[i];
                if let Some(glyph) = self.config.symbol_library.get_glyph_with_label(glyph_label) {
                    symcode_image.paste_from(&glyph.image, glyph_top_left.to_point_i32());
                }
            }
        });

        symcode_image
    }
}