1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// (c) 2016 Productize SPRL <joost@productize.be>

use std::fmt;
use std::result;
use std::str::FromStr;

use str_error;
use Result;

/// like Into trait but works from a ref avoiding consumption or expensive clone
pub trait IntoSexp {
    /// convert self into a Sexp
    fn into_sexp(&self) -> Sexp;
}

/// a symbolic-expression
/// Can be a string or a list or nothing
#[derive(Debug, Clone)]
pub enum Sexp {
    /// plain String symbolic-expression
    String(String),
    /// list symbolic-expression
    List(Vec<Sexp>),
    /// empty, trivial symbolic-expression
    Empty,
}

// Following the KiCad file formats specification chapter 4.4 - Identifiers and Strings:
// A string may not contain an actual newline or carriage return,
// but it may use an escape sequence to encode a // newline, such as \n.
// If a string has any of the following conditions, then it must be quoted
// with a leading and trailing double quote
// character, otherwise it is acceptable to not quote the string:
// 1. has one or more of the following 4 separator bytes: ASCII space,
// tab, '(', or ')'.
// 2. has one or more of the following bytes: '%', '{', or '}'.
// 3. has a length of zero bytes, and you need a place holder for the field,
//  then use "".
// 4. includes a byte of '-', and this byte is not in the first position of
// the string.
//

// Joost remark: kicad no longer seems to follow Rule 4.
// so we don't either

/// encode a string according to the guidelines given by Kicad
pub fn encode_string(s: &str) -> String {
    // fn rule_4(s:&str) -> bool {
    // s.contains('-') && s.len() > 1 && s.as_bytes()[0] != 45
    // }
    if s.contains('(') || s.contains(' ') || s.contains(')') || s.contains('\t') ||
       s.contains('{') || s.contains('}') || s.contains('}') || s.contains('%') ||
       s.is_empty()
    // || rule_4(s)
    {
        format!("\"{}\"", s)
    } else {
        String::from(s)
    }
}

impl Sexp {
    /// create an empty symbolic-expression
    pub fn new_empty() -> Sexp {
        Sexp::Empty
    }

    /// create a String type symbolic-expression
    pub fn new_string<T>(s: T) -> Sexp
        where T: fmt::Display
    {
        Sexp::String(format!("{}", s))
    }

    /// create a list type symbolic-expression
    pub fn new_list(v: Vec<Sexp>) -> Sexp {
        Sexp::List(v)
    }

    /// create a list type symbolic-expression where
    /// the first element of the list is a string that indicates
    /// the name, the remainder is filled in via the provided
    /// fill function
    pub fn new_named_list<F>(name: &str, fill: F) -> Sexp
        where F: Fn(&mut Vec<Sexp>)
    {
        let mut v = vec![];
        v.push(Sexp::new_string(name));
        fill(&mut v);
        Sexp::List(v)
    }

    /// create a list type symbolic-expression where
    /// the first element of the list is a string that indicates
    /// the name
    pub fn new_named<T>(name: &str, value: T) -> Sexp
        where T: fmt::Display
    {
        let mut v = vec![];
        v.push(Sexp::new_string(name));
        v.push(Sexp::new_string(value));
        Sexp::List(v)
    }

    /// create a list type symbolic-expression where
    /// the first element of the list is a string that indicates
    /// the name, and the second is another symbolic-expression
    /// created via the IntoSexp trait
    pub fn new_named_sexp<T>(name: &str, value: &T) -> Sexp
        where T: IntoSexp
    {
        let mut v = vec![];
        v.push(Sexp::new_string(name));
        v.push(value.into_sexp());
        Sexp::List(v)
    }

    /// create a symbolic-expression via the IntoSexp trait
    pub fn from<T: IntoSexp>(t: &T) -> Sexp {
        t.into_sexp()
    }

    /// access the symbolic-expression as if it is a List
    pub fn list(&self) -> Result<&Vec<Sexp>> {
        match *self {
            Sexp::List(ref v) => Ok(v),
            _ => str_error(format!("not a list: {}", self)),
        }
    }

    /// access the symbolic-expression as if it is a String
    pub fn string(&self) -> Result<&String> {
        match *self {
            Sexp::String(ref s) => Ok(s),
            _ => str_error(format!("not a string: {}", self)),
        }
    }

    /// access the symbolic-expression as if it is a String
    /// that is a f64
    pub fn f(&self) -> Result<f64> {
        let s = try!(self.string());
        match f64::from_str(s) {
            Ok(f) => Ok(f),
            _ => str_error("Error parsing float".to_string()),
        }
    }

    /// access the symbolic-expression as if it is a String
    /// that is an i64
    pub fn i(&self) -> Result<i64> {
        let s = try!(self.string());
        match i64::from_str(s) {
            Ok(f) => Ok(f),
            _ => str_error("Error parsing int".to_string()),
        }
    }

    /// access the symbolic-expression as if it is a List
    /// assuming the first element is a String and return that
    pub fn list_name(&self) -> Result<&String> {
        let l = try!(self.list());
        let l = &l[..];
        let a = try!(l[0].string());
        Ok(a)
    }

    /// access the symbolic-expression as if it is a named List
    /// where the name is provided and returns the remaining elements
    /// after the name as a slice
    pub fn slice_atom(&self, s: &str) -> Result<&[Sexp]> {
        let v = try!(self.list());
        let v2 = &v[..];
        let st = try!(v2[0].string());
        if st != s {
            return str_error(format!("list {} doesn't start with {}, but with {}", self, s, st));
        };
        Ok(&v[1..])
    }

    /// access the symbolic-expression as if it is a named List
    /// with two elements where the name is provided and returns
    /// the next element in the list
    pub fn named_value(&self, s: &str) -> Result<&Sexp> {
        let v = try!(self.list());
        if v.len() != 2 {
            return str_error(format!("list {} is not a named_value", s));
        }
        let l = try!(self.slice_atom(s));
        Ok(&l[0])
    }

    /// as named_value but converted to i64
    pub fn named_value_i(&self, s: &str) -> Result<i64> {
        try!(self.named_value(s)).i()
    }

    /// as named_value but converted to f64
    pub fn named_value_f(&self, s: &str) -> Result<f64> {
        try!(self.named_value(s)).f()
    }

    /// as named_value but converted to String
    pub fn named_value_string(&self, s: &str) -> Result<&String> {
        try!(self.named_value(s)).string()
    }

    /// get the symbolic-expression as a list which starts
    /// with a string that indicates the name and has num more
    /// elements, returns those elements
    pub fn slice_atom_num(&self, s: &str, num: usize) -> Result<&[Sexp]> {
        let v = try!(self.list());
        let v2 = &v[..];
        let st = try!(v2[0].string());
        if st != s {
            return str_error(format!("list doesn't start with {}, but with {}", s, st));
        };
        if v.len() != (num + 1) {
            return str_error(format!("list ({}) doesn't have {} elements but {}",
                                     s,
                                     num,
                                     v.len() - 1));
        }
        Ok(&v[1..])
    }
}

impl fmt::Display for Sexp {
    fn fmt(&self, f: &mut fmt::Formatter) -> result::Result<(), fmt::Error> {
        match *self {
            Sexp::String(ref s) => write!(f, "{}", encode_string(s)),
            Sexp::List(ref v) => {
                try!(write!(f, "("));
                let l = v.len();
                for (i, x) in v.iter().enumerate() {
                    if i < l - 1 {
                        try!(write!(f, "{} ", x));
                    } else {
                        try!(write!(f, "{}", x));
                    }
                }
                write!(f, ")")
            }
            Sexp::Empty => Ok(()),
        }
    }
}