1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
//! Support for Portable Executables, an extension of COFF used on Windows.

use std::borrow::Cow;
use std::error::Error;
use std::fmt;
use std::io::Write;

use gimli::RunTimeEndian;
use goblin::pe;
use scroll::{Pread, LE};
use thiserror::Error;

use symbolic_common::{Arch, AsSelf, CodeId, DebugId};

use crate::base::*;
use crate::dwarf::*;
use crate::Parse;

pub use goblin::pe::exception::*;
pub use goblin::pe::section_table::SectionTable;

/// An error when dealing with [`PEObject`](struct.PEObject.html).
#[derive(Debug, Error)]
#[error("invalid PE file")]
pub struct PeError {
    #[source]
    source: Option<Box<dyn Error + Send + Sync + 'static>>,
}

impl PeError {
    /// Creates a new PE error from an arbitrary error payload.
    fn new<E>(source: E) -> Self
    where
        E: Into<Box<dyn Error + Send + Sync>>,
    {
        let source = Some(source.into());
        Self { source }
    }
}

/// Detects if the PE is a packer stub.
///
/// Such files usually only contain empty stubs in their `.pdata` and `.text` sections, and unwind
/// information cannot be retrieved reliably. Usually, the exception table is present, but unwind
/// info points into a missing section.
fn is_pe_stub(pe: &pe::PE<'_>) -> bool {
    let mut has_stub = false;
    let mut pdata_empty = false;

    for section in &pe.sections {
        let name = section.name().unwrap_or_default();
        pdata_empty = pdata_empty || name == ".pdata" && section.size_of_raw_data == 0;
        has_stub = has_stub || name.starts_with(".stub");
    }

    pdata_empty && has_stub
}

/// Portable Executable, an extension of COFF used on Windows.
///
/// This file format is used to carry program code. Debug information is usually moved to a separate
/// container, [`PdbObject`]. The PE file contains a reference to the PDB and vice versa to verify
/// that the files belong together.
///
/// In rare instances, PE files might contain debug information.
/// This is supported for DWARF debug information.
///
/// [`PdbObject`]: ../pdb/struct.PdbObject.html
pub struct PeObject<'data> {
    pe: pe::PE<'data>,
    data: &'data [u8],
    is_stub: bool,
}

impl<'data> PeObject<'data> {
    /// Tests whether the buffer could contain an PE object.
    pub fn test(data: &[u8]) -> bool {
        matches!(
            data.get(0..2)
                .and_then(|data| data.pread_with::<u16>(0, LE).ok()),
            Some(pe::header::DOS_MAGIC)
        )
    }

    /// Tries to parse a PE object from the given slice.
    pub fn parse(data: &'data [u8]) -> Result<Self, PeError> {
        let pe = pe::PE::parse(data).map_err(PeError::new)?;
        let is_stub = is_pe_stub(&pe);
        Ok(PeObject { pe, data, is_stub })
    }

    /// The container file format, which is always `FileFormat::Pe`.
    pub fn file_format(&self) -> FileFormat {
        FileFormat::Pe
    }

    /// The code identifier of this object.
    ///
    /// The code identifier consists of the `time_date_stamp` field id the COFF header, followed by
    /// the `size_of_image` field in the optional header. If the optional PE header is not present,
    /// this identifier is `None`.
    pub fn code_id(&self) -> Option<CodeId> {
        let header = &self.pe.header;
        let optional_header = header.optional_header.as_ref()?;

        let timestamp = header.coff_header.time_date_stamp;
        let size_of_image = optional_header.windows_fields.size_of_image;
        let string = format!("{timestamp:08x}{size_of_image:x}");
        Some(CodeId::new(string))
    }

    /// The debug information identifier of this PE.
    ///
    /// Since debug information is usually stored in an external
    /// [`PdbObject`](crate::pdb::PdbObject), this identifier actually refers to the
    /// PDB. While strictly the filename of the PDB would also be necessary fully resolve
    /// it, in most instances the GUID and age contained in this identifier are sufficient.
    pub fn debug_id(&self) -> DebugId {
        self.pe
            .debug_data
            .as_ref()
            .and_then(|debug_data| {
                debug_data
                    .codeview_pdb70_debug_info
                    .as_ref()
                    .map(|cv_record| (debug_data.image_debug_directory, cv_record))
            })
            .and_then(|(debug_directory, cv_record)| {
                let guid = &cv_record.signature;

                // Deterministic PE files have a different debug_id format:
                //
                // > Version Major=any, Minor=0x504d of the data format has the same structure as above.
                // > The Age shall be 1. The format of the .pdb file that this PE/COFF file was built with is Portable PDB.
                // > The Major version specified in the entry indicates the version of the Portable PDB format.
                // > Together 16B of the Guid concatenated with 4B of the TimeDateStamp field of the entry form a PDB ID that should be used to match the PE/COFF image with the associated PDB (instead of Guid and Age).
                // > Matching PDB ID is stored in the #Pdb stream of the .pdb file.
                //
                // See https://github.com/dotnet/runtime/blob/main/docs/design/specs/PE-COFF.md#codeview-debug-directory-entry-type-2
                let age = if debug_directory.minor_version == 0x504d {
                    debug_directory.time_date_stamp
                } else {
                    cv_record.age
                };

                DebugId::from_guid_age(guid, age).ok()
            })
            .unwrap_or_default()
    }

    /// The name of the referenced PDB file.
    pub fn debug_file_name(&self) -> Option<Cow<'_, str>> {
        self.pe
            .debug_data
            .as_ref()
            .and_then(|debug_data| debug_data.codeview_pdb70_debug_info.as_ref())
            .map(|debug_info| {
                String::from_utf8_lossy(&debug_info.filename[..debug_info.filename.len() - 1])
            })
    }

    /// The CPU architecture of this object, as specified in the COFF header.
    pub fn arch(&self) -> Arch {
        let machine = self.pe.header.coff_header.machine;
        crate::pdb::arch_from_machine(machine.into())
    }

    /// The kind of this object, as specified in the PE header.
    pub fn kind(&self) -> ObjectKind {
        if self.pe.is_lib {
            ObjectKind::Library
        } else if self.is_stub {
            ObjectKind::Other
        } else {
            ObjectKind::Executable
        }
    }

    /// The address at which the image prefers to be loaded into memory.
    ///
    /// ELF files store all internal addresses as if it was loaded at that address. When the image
    /// is actually loaded, that spot might already be taken by other images and so it must be
    /// relocated to a new address. During load time, the loader rewrites all addresses in the
    /// program code to match the new load address so that there is no runtime overhead when
    /// executing the code.
    ///
    /// Addresses used in `symbols` or `debug_session` have already been rebased relative to that
    /// load address, so that the caller only has to deal with addresses relative to the actual
    /// start of the image.
    pub fn load_address(&self) -> u64 {
        self.pe.image_base as u64
    }

    /// Determines whether this object exposes a public symbol table.
    pub fn has_symbols(&self) -> bool {
        !self.pe.exports.is_empty()
    }

    /// Returns an iterator over symbols in the public symbol table.
    pub fn symbols(&self) -> PeSymbolIterator<'data, '_> {
        PeSymbolIterator {
            exports: self.pe.exports.iter(),
        }
    }

    /// Returns an ordered map of symbols in the symbol table.
    pub fn symbol_map(&self) -> SymbolMap<'data> {
        self.symbols().collect()
    }

    /// Determines whether this object contains debug information.
    ///
    /// Not usually the case, except for PE's generated by some alternative toolchains
    /// which contain DWARF debug info.
    pub fn has_debug_info(&self) -> bool {
        self.section(".debug_info").is_some()
    }

    /// Determines whether this object contains embedded source.
    pub fn has_sources(&self) -> bool {
        false
    }

    /// Determines whether this object is malformed and was only partially parsed
    pub fn is_malformed(&self) -> bool {
        false
    }

    /// Constructs a debugging session.
    ///
    /// A debugging session loads certain information from the object file and creates caches for
    /// efficient access to various records in the debug information. Since this can be quite a
    /// costly process, try to reuse the debugging session as long as possible.
    ///
    /// PE files usually don't have embedded debugging information,
    /// but some toolchains (e.g. MinGW) generate DWARF debug info.
    ///
    /// Constructing this session will also work if the object does not contain debugging
    /// information, in which case the session will be a no-op. This can be checked via
    /// [`has_debug_info`](struct.PeObject.html#method.has_debug_info).
    pub fn debug_session(&self) -> Result<DwarfDebugSession<'data>, DwarfError> {
        let symbols = self.symbol_map();
        DwarfDebugSession::parse(self, symbols, self.load_address() as i64, self.kind())
    }

    /// Determines whether this object contains stack unwinding information.
    pub fn has_unwind_info(&self) -> bool {
        !self.is_stub && self.exception_data().map_or(false, |e| !e.is_empty())
    }

    /// Returns the raw data of the PE file.
    pub fn data(&self) -> &'data [u8] {
        self.data
    }

    /// A list of the sections in this PE binary, used to resolve virtual addresses.
    pub fn sections(&self) -> &[SectionTable] {
        &self.pe.sections
    }

    /// Returns the `SectionTable` for the section with this name, if present.
    pub fn section(&self, name: &str) -> Option<SectionTable> {
        for s in &self.pe.sections {
            let sect_name = s.name();
            if sect_name.is_ok() && sect_name.unwrap() == name {
                return Some(s.clone());
            }
        }
        None
    }

    /// Returns exception data containing unwind information.
    pub fn exception_data(&self) -> Option<&ExceptionData<'_>> {
        if self.is_stub {
            None
        } else {
            self.pe.exception_data.as_ref()
        }
    }

    /// Returns the raw buffer of Embedded Portable PDB Debug directory entry, if any.
    pub fn embedded_ppdb(&self) -> Result<Option<PeEmbeddedPortablePDB<'data>>, PeError> {
        // Note: This is currently not supported by goblin, see https://github.com/m4b/goblin/issues/314
        let Some(opt_header) = self.pe.header.optional_header else {
            return Ok(None);
        };
        let Some(debug_directory) = opt_header.data_directories.get_debug_table().as_ref() else {
            return Ok(None);
        };
        let file_alignment = opt_header.windows_fields.file_alignment;
        let parse_options = &pe::options::ParseOptions::default();
        let Some(offset) = pe::utils::find_offset(
            debug_directory.virtual_address as usize,
            &self.pe.sections,
            file_alignment,
            parse_options,
        ) else {
            return Ok(None);
        };

        use pe::debug::ImageDebugDirectory;
        let entries = debug_directory.size as usize / std::mem::size_of::<ImageDebugDirectory>();
        for i in 0..entries {
            let entry = offset + i * std::mem::size_of::<ImageDebugDirectory>();
            let idd: ImageDebugDirectory = self.data.pread_with(entry, LE).map_err(PeError::new)?;

            // We're only looking for Embedded Portable PDB Debug Directory Entry (type 17).
            if idd.data_type == 17 {
                // See data specification:
                // https://github.com/dotnet/runtime/blob/97ddb55e3adde20ceac579d935cef83cfe996169/docs/design/specs/PE-COFF.md#embedded-portable-pdb-debug-directory-entry-type-17
                if idd.size_of_data < 8 {
                    return Err(PeError::new(symbolic_ppdb::FormatError::from(
                        symbolic_ppdb::FormatErrorKind::InvalidLength,
                    )));
                }

                // ImageDebugDirectory.pointer_to_raw_data stores a raw offset -- not a virtual offset -- which we can use directly
                let mut offset: usize = match parse_options.resolve_rva {
                    true => idd.pointer_to_raw_data as usize,
                    false => idd.address_of_raw_data as usize,
                };

                let mut signature: [u8; 4] = [0; 4];
                self.data
                    .gread_inout(&mut offset, &mut signature)
                    .map_err(PeError::new)?;
                if signature != "MPDB".as_bytes() {
                    return Err(PeError::new(symbolic_ppdb::FormatError::from(
                        symbolic_ppdb::FormatErrorKind::InvalidSignature,
                    )));
                }
                let uncompressed_size: u32 = self
                    .data
                    .gread_with(&mut offset, LE)
                    .map_err(PeError::new)?;

                // 8 == the number bytes we have just read.
                let compressed_size = idd.size_of_data as usize - 8;

                return Ok(Some(PeEmbeddedPortablePDB {
                    compressed_data: self
                        .data
                        .get(offset..(offset + compressed_size))
                        .ok_or_else(|| {
                            PeError::new(symbolic_ppdb::FormatError::from(
                                symbolic_ppdb::FormatErrorKind::InvalidBlobOffset,
                            ))
                        })?,
                    uncompressed_size: uncompressed_size as usize,
                }));
            }
        }
        Ok(None)
    }
}

impl fmt::Debug for PeObject<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PeObject")
            .field("code_id", &self.code_id())
            .field("debug_id", &self.debug_id())
            .field("debug_file_name", &self.debug_file_name())
            .field("arch", &self.arch())
            .field("kind", &self.kind())
            .field("load_address", &format_args!("{:#x}", self.load_address()))
            .field("has_symbols", &self.has_symbols())
            .field("has_debug_info", &self.has_debug_info())
            .field("has_unwind_info", &self.has_unwind_info())
            .field("is_malformed", &self.is_malformed())
            .finish()
    }
}

impl<'slf, 'data: 'slf> AsSelf<'slf> for PeObject<'data> {
    type Ref = PeObject<'slf>;

    fn as_self(&'slf self) -> &Self::Ref {
        self
    }
}

impl<'data> Parse<'data> for PeObject<'data> {
    type Error = PeError;

    fn test(data: &[u8]) -> bool {
        Self::test(data)
    }

    fn parse(data: &'data [u8]) -> Result<Self, PeError> {
        Self::parse(data)
    }
}

impl<'data: 'object, 'object> ObjectLike<'data, 'object> for PeObject<'data> {
    type Error = DwarfError;
    type Session = DwarfDebugSession<'data>;
    type SymbolIterator = PeSymbolIterator<'data, 'object>;

    fn file_format(&self) -> FileFormat {
        self.file_format()
    }

    fn code_id(&self) -> Option<CodeId> {
        self.code_id()
    }

    fn debug_id(&self) -> DebugId {
        self.debug_id()
    }

    fn arch(&self) -> Arch {
        self.arch()
    }

    fn kind(&self) -> ObjectKind {
        self.kind()
    }

    fn load_address(&self) -> u64 {
        self.load_address()
    }

    fn has_symbols(&self) -> bool {
        self.has_symbols()
    }

    fn symbols(&'object self) -> Self::SymbolIterator {
        self.symbols()
    }

    fn symbol_map(&self) -> SymbolMap<'data> {
        self.symbol_map()
    }

    fn has_debug_info(&self) -> bool {
        self.has_debug_info()
    }

    fn debug_session(&self) -> Result<Self::Session, Self::Error> {
        self.debug_session()
    }

    fn has_unwind_info(&self) -> bool {
        self.has_unwind_info()
    }

    fn has_sources(&self) -> bool {
        self.has_sources()
    }

    fn is_malformed(&self) -> bool {
        self.is_malformed()
    }
}

/// An iterator over symbols in the PE file.
///
/// Returned by [`PeObject::symbols`](struct.PeObject.html#method.symbols).
pub struct PeSymbolIterator<'data, 'object> {
    exports: std::slice::Iter<'object, pe::export::Export<'data>>,
}

impl<'data, 'object> Iterator for PeSymbolIterator<'data, 'object> {
    type Item = Symbol<'data>;

    fn next(&mut self) -> Option<Self::Item> {
        self.exports.next().map(|export| Symbol {
            name: export.name.map(Cow::Borrowed),
            address: export.rva as u64,
            size: export.size as u64,
        })
    }
}

impl<'data> Dwarf<'data> for PeObject<'data> {
    fn endianity(&self) -> RunTimeEndian {
        // According to https://reverseengineering.stackexchange.com/questions/17922/determining-endianness-of-pe-files-windows-on-arm,
        // the only known platform running PE's with big-endian code is the Xbox360. Probably not worth handling.
        RunTimeEndian::Little
    }

    fn raw_section(&self, name: &str) -> Option<DwarfSection<'data>> {
        // Name is given without leading "."
        let sect = self.section(&format!(".{name}"))?;
        let start = sect.pointer_to_raw_data as usize;
        let end = start + (sect.virtual_size as usize);
        let dwarf_data: &'data [u8] = self.data.get(start..end)?;
        let dwarf_sect = DwarfSection {
            // TODO: What about 64-bit PE+? Still 32 bit?
            address: u64::from(sect.virtual_address),
            data: Cow::from(dwarf_data),
            offset: u64::from(sect.pointer_to_raw_data),
            align: 4096, // TODO: Does goblin expose this? For now, assume 4K page size
        };
        Some(dwarf_sect)
    }
}

/// Embedded Portable PDB data wrapper that can be decompressed when needed.
#[derive(Debug, Clone)]
pub struct PeEmbeddedPortablePDB<'data> {
    compressed_data: &'data [u8],
    uncompressed_size: usize,
}

impl<'data, 'object> PeEmbeddedPortablePDB<'data> {
    /// Returns the uncompressed size of the Portable PDB buffer.
    pub fn get_size(&'object self) -> usize {
        self.uncompressed_size
    }

    /// Reads the Portable PDB contents into the writer.
    pub fn decompress_to<W: Write>(&self, output: W) -> Result<(), PeError> {
        use std::io::prelude::*;
        let mut decoder = flate2::write::DeflateDecoder::new(output);
        decoder
            .write_all(self.compressed_data)
            .and_then(|_| decoder.finish())
            .map_err(PeError::new)?;
        Ok(())
    }
}