1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
//! Support for Program Database, the debug companion format on Windows.

use std::borrow::Cow;
use std::collections::btree_map::BTreeMap;
use std::error::Error;
use std::fmt;
use std::io::Cursor;
use std::sync::Arc;

use elsa::FrozenMap;
use parking_lot::RwLock;
use pdb_addr2line::pdb::{
    AddressMap, FallibleIterator, ImageSectionHeader, InlineSiteSymbol, LineProgram, MachineType,
    Module, ModuleInfo, PdbInternalSectionOffset, ProcedureSymbol, RawString, SeparatedCodeSymbol,
    SymbolData, TypeIndex,
};
use pdb_addr2line::ModuleProvider;
use smallvec::SmallVec;
use thiserror::Error;

use symbolic_common::{
    Arch, AsSelf, CodeId, CpuFamily, DebugId, Language, Name, NameMangling, SelfCell, Uuid,
};

use crate::base::*;
use crate::function_stack::FunctionStack;
use crate::sourcebundle::SourceFileDescriptor;
use crate::Parse;

type Pdb<'data> = pdb::PDB<'data, Cursor<&'data [u8]>>;

const MAGIC_BIG: &[u8] = b"Microsoft C/C++ MSF 7.00\r\n\x1a\x44\x53\x00\x00\x00";

// Used for CFI, remove once abstraction is complete
#[doc(hidden)]
pub use pdb_addr2line::pdb;

/// The error type for [`PdbError`].
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum PdbErrorKind {
    /// The PDB file is corrupted. See the cause for more information.
    BadObject,

    /// An inline record was encountered without an inlining parent.
    UnexpectedInline,

    /// Formatting of a type name failed.
    FormattingFailed,
}

impl fmt::Display for PdbErrorKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::BadObject => write!(f, "invalid pdb file"),
            Self::UnexpectedInline => write!(f, "unexpected inline function without parent"),
            Self::FormattingFailed => write!(f, "failed to format type name"),
        }
    }
}

/// An error when dealing with [`PdbObject`](struct.PdbObject.html).
#[derive(Debug, Error)]
#[error("{kind}")]
pub struct PdbError {
    kind: PdbErrorKind,
    #[source]
    source: Option<Box<dyn Error + Send + Sync + 'static>>,
}

impl PdbError {
    /// Creates a new PDB error from a known kind of error as well as an arbitrary error
    /// payload.
    fn new<E>(kind: PdbErrorKind, source: E) -> Self
    where
        E: Into<Box<dyn Error + Send + Sync>>,
    {
        let source = Some(source.into());
        Self { kind, source }
    }

    /// Returns the corresponding [`PdbErrorKind`] for this error.
    pub fn kind(&self) -> PdbErrorKind {
        self.kind
    }
}

impl From<PdbErrorKind> for PdbError {
    fn from(kind: PdbErrorKind) -> Self {
        Self { kind, source: None }
    }
}

impl From<pdb::Error> for PdbError {
    fn from(e: pdb::Error) -> Self {
        Self::new(PdbErrorKind::BadObject, e)
    }
}

impl From<fmt::Error> for PdbError {
    fn from(e: fmt::Error) -> Self {
        Self::new(PdbErrorKind::FormattingFailed, e)
    }
}

impl From<pdb_addr2line::Error> for PdbError {
    fn from(e: pdb_addr2line::Error) -> Self {
        match e {
            pdb_addr2line::Error::PdbError(e) => Self::new(PdbErrorKind::BadObject, e),
            pdb_addr2line::Error::FormatError(e) => Self::new(PdbErrorKind::FormattingFailed, e),
            e => Self::new(PdbErrorKind::FormattingFailed, e),
        }
    }
}

/// Program Database, the debug companion format on Windows.
///
/// This object is a sole debug companion to [`PeObject`](../pdb/struct.PdbObject.html).
pub struct PdbObject<'data> {
    pdb: Arc<RwLock<Pdb<'data>>>,
    debug_info: Arc<pdb::DebugInformation<'data>>,
    pdb_info: pdb::PDBInformation<'data>,
    public_syms: pdb::SymbolTable<'data>,
    executable_sections: ExecutableSections,
    data: &'data [u8],
}

// NB: The pdb crate simulates mmap behavior on any Read + Seek type. This implementation requires
// mutability of the `Source` and uses trait objects without a Send + Sync barrier. We know that we
// only instanciate `&[u8]` as source. Whenever we mutate the reader (to read a new module stream),
// we acquire a write lock on the PDB, which should be sufficient.
unsafe impl Send for PdbObject<'_> {}
unsafe impl Sync for PdbObject<'_> {}

impl<'data> PdbObject<'data> {
    /// Tests whether the buffer could contain an PDB object.
    pub fn test(data: &[u8]) -> bool {
        // NB: "Microsoft C/C++ program database 2.00" is not supported by the pdb crate, so there
        // is no point in pretending we could read it.
        data.starts_with(MAGIC_BIG)
    }

    /// Tries to parse a PDB object from the given slice.
    #[allow(clippy::arc_with_non_send_sync)]
    pub fn parse(data: &'data [u8]) -> Result<Self, PdbError> {
        let mut pdb = Pdb::open(Cursor::new(data))?;
        let dbi = pdb.debug_information()?;
        let pdbi = pdb.pdb_information()?;
        let pubi = pdb.global_symbols()?;
        let sections = pdb.sections()?;

        Ok(PdbObject {
            pdb: Arc::new(RwLock::new(pdb)),
            debug_info: Arc::new(dbi),
            pdb_info: pdbi,
            public_syms: pubi,
            data,
            executable_sections: ExecutableSections::from_sections(&sections),
        })
    }

    /// The container file format, which is always `FileFormat::Pdb`.
    pub fn file_format(&self) -> FileFormat {
        FileFormat::Pdb
    }

    /// The code identifier of this object, always `None`.
    ///
    /// PDB files do not contain sufficient information to compute the code identifier, since they
    /// are lacking the relevant parts of the PE header.
    pub fn code_id(&self) -> Option<CodeId> {
        None
    }

    /// The debug information identifier of this PDB.
    ///
    /// The PDB stores a specific header that contains GUID and age bits. Additionally, Microsoft
    /// uses the file name of the PDB to avoid GUID collisions. In most contexts, however, it is
    /// sufficient to rely on the uniqueness of the GUID to identify a PDB.
    ///
    /// The same information is also stored in a header in the corresponding PE file, which can be
    /// used to locate a PDB from a PE.
    pub fn debug_id(&self) -> DebugId {
        // Prefer the age from the debug information stream, as it is more likely to correspond to
        // the executable than the PDB info header. The latter is often bumped independently when
        // the PDB is processed or optimized, which causes it to go out of sync with the original
        // image.
        let age = self.debug_info.age().unwrap_or(self.pdb_info.age);
        match Uuid::from_slice(&self.pdb_info.guid.as_bytes()[..]) {
            Ok(uuid) => DebugId::from_parts(uuid, age),
            Err(_) => DebugId::default(),
        }
    }

    /// The CPU architecture of this object, as specified in the debug information stream (DBI).
    pub fn arch(&self) -> Arch {
        self.debug_info
            .machine_type()
            .ok()
            .map(arch_from_machine)
            .unwrap_or_default()
    }

    /// The kind of this object, which is always `Debug`.
    pub fn kind(&self) -> ObjectKind {
        ObjectKind::Debug
    }

    /// The address at which the image prefers to be loaded into memory.
    ///
    /// The PDB only stores relative addresses, and more importantly, does not provide sufficient
    /// information to compute the original PE's load address. The according PE, however does
    /// feature a load address (called `image_base`). See [`PeObject::load_address`] for more
    /// information.
    ///
    /// [`PeObject::load_address`]: ../pe/struct.PeObject.html#method.load_address
    pub fn load_address(&self) -> u64 {
        0
    }

    /// Determines whether this object exposes a public symbol table.
    pub fn has_symbols(&self) -> bool {
        // We can safely assume that PDBs will always contain symbols.
        true
    }

    /// Returns an iterator over symbols in the public symbol table.
    pub fn symbols(&self) -> PdbSymbolIterator<'data, '_> {
        PdbSymbolIterator {
            symbols: self.public_syms.iter(),
            address_map: self.pdb.write().address_map().ok(),
            executable_sections: &self.executable_sections,
        }
    }

    /// Returns an ordered map of symbols in the symbol table.
    pub fn symbol_map(&self) -> SymbolMap<'data> {
        self.symbols().collect()
    }

    /// Determines whether this object contains debug information.
    pub fn has_debug_info(&self) -> bool {
        // There is no cheap way to find out if a PDB contains debugging information that we care
        // about. Effectively, we're interested in local symbols declared in the module info
        // streams. To reliably determine whether any stream is present, we'd have to probe each one
        // of them, which can result in quite a lot of disk I/O.
        true
    }

    /// Determines whether this object contains embedded source.
    pub fn has_sources(&self) -> bool {
        false
    }

    /// Determines whether this object is malformed and was only partially parsed
    pub fn is_malformed(&self) -> bool {
        false
    }

    /// Constructs a debugging session.
    pub fn debug_session(&self) -> Result<PdbDebugSession<'data>, PdbError> {
        PdbDebugSession::build(self)
    }

    /// Determines whether this object contains stack unwinding information.
    pub fn has_unwind_info(&self) -> bool {
        // The PDB crate currently loads quite a lot of information from the PDB when accessing the
        // frame table. However, we expect unwind info in every PDB for 32-bit builds, so we can
        // just assume it's there if the architecture matches.
        // TODO: Implement a better way by exposing the extra streams in the PDB crate.
        self.arch().cpu_family() == CpuFamily::Intel32
    }

    /// Returns the raw data of the ELF file.
    pub fn data(&self) -> &'data [u8] {
        self.data
    }

    #[doc(hidden)]
    pub fn inner(&self) -> &RwLock<Pdb<'data>> {
        &self.pdb
    }
}

impl fmt::Debug for PdbObject<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PdbObject")
            .field("debug_id", &self.debug_id())
            .field("arch", &self.arch())
            .field("load_address", &format_args!("{:#x}", self.load_address()))
            .field("has_symbols", &self.has_symbols())
            .field("has_debug_info", &self.has_debug_info())
            .field("has_unwind_info", &self.has_unwind_info())
            .field("is_malformed", &self.is_malformed())
            .finish()
    }
}

impl<'slf, 'data: 'slf> AsSelf<'slf> for PdbObject<'data> {
    type Ref = PdbObject<'slf>;

    fn as_self(&'slf self) -> &Self::Ref {
        unsafe { std::mem::transmute(self) }
    }
}

impl<'data> Parse<'data> for PdbObject<'data> {
    type Error = PdbError;

    fn test(data: &[u8]) -> bool {
        Self::test(data)
    }

    fn parse(data: &'data [u8]) -> Result<Self, PdbError> {
        Self::parse(data)
    }
}

impl<'data: 'object, 'object> ObjectLike<'data, 'object> for PdbObject<'data> {
    type Error = PdbError;
    type Session = PdbDebugSession<'data>;
    type SymbolIterator = PdbSymbolIterator<'data, 'object>;

    fn file_format(&self) -> FileFormat {
        self.file_format()
    }

    fn code_id(&self) -> Option<CodeId> {
        self.code_id()
    }

    fn debug_id(&self) -> DebugId {
        self.debug_id()
    }

    fn arch(&self) -> Arch {
        self.arch()
    }

    fn kind(&self) -> ObjectKind {
        self.kind()
    }

    fn load_address(&self) -> u64 {
        self.load_address()
    }

    fn has_symbols(&self) -> bool {
        self.has_symbols()
    }

    fn symbols(&'object self) -> Self::SymbolIterator {
        self.symbols()
    }

    fn symbol_map(&self) -> SymbolMap<'data> {
        self.symbol_map()
    }

    fn has_debug_info(&self) -> bool {
        self.has_debug_info()
    }

    fn debug_session(&self) -> Result<Self::Session, Self::Error> {
        self.debug_session()
    }

    fn has_unwind_info(&self) -> bool {
        self.has_unwind_info()
    }

    fn has_sources(&self) -> bool {
        self.has_sources()
    }

    fn is_malformed(&self) -> bool {
        self.is_malformed()
    }
}

pub(crate) fn arch_from_machine(machine: MachineType) -> Arch {
    match machine {
        MachineType::X86 => Arch::X86,
        MachineType::Amd64 => Arch::Amd64,
        MachineType::Arm => Arch::Arm,
        MachineType::Arm64 => Arch::Arm64,
        MachineType::PowerPC => Arch::Ppc,
        _ => Arch::Unknown,
    }
}

/// Contains information about which sections are executable.
struct ExecutableSections {
    /// For every section header in the PDB, a boolean which indicates whether the "executable"
    /// or "execute" flag is set in the section header's characteristics.
    is_executable_per_section: Vec<bool>,
}

impl ExecutableSections {
    pub fn from_sections(sections: &Option<Vec<ImageSectionHeader>>) -> Self {
        Self {
            is_executable_per_section: match sections {
                Some(sections) => sections
                    .iter()
                    .map(|section| section.characteristics)
                    .map(|char| char.executable() || char.execute())
                    .collect(),
                None => Default::default(),
            },
        }
    }

    /// Returns whether the given offset is contained in an executable section.
    pub fn contains(&self, offset: &PdbInternalSectionOffset) -> bool {
        // offset.section is a one-based index.
        if offset.section == 0 {
            // No section.
            return false;
        }

        let section_index = (offset.section - 1) as usize;
        self.is_executable_per_section
            .get(section_index)
            .cloned()
            .unwrap_or(false)
    }
}

/// An iterator over symbols in the PDB file.
///
/// Returned by [`PdbObject::symbols`](struct.PdbObject.html#method.symbols).
pub struct PdbSymbolIterator<'data, 'object> {
    symbols: pdb::SymbolIter<'object>,
    address_map: Option<AddressMap<'data>>,
    executable_sections: &'object ExecutableSections,
}

impl<'data, 'object> Iterator for PdbSymbolIterator<'data, 'object> {
    type Item = Symbol<'data>;

    fn next(&mut self) -> Option<Self::Item> {
        let address_map = self.address_map.as_ref()?;

        while let Ok(Some(symbol)) = self.symbols.next() {
            if let Ok(SymbolData::Public(public)) = symbol.parse() {
                if !self.executable_sections.contains(&public.offset) {
                    continue;
                }

                let address = match public.offset.to_rva(address_map) {
                    Some(address) => address,
                    None => continue,
                };

                // pdb::SymbolIter offers data bound to its own lifetime since it holds the
                // buffer containing public symbols. The contract requires that we return
                // `Symbol<'data>`, so we cannot return zero-copy symbols here.
                let cow = public.name.to_string();
                let name = Cow::from(String::from(cow));

                return Some(Symbol {
                    name: Some(name),
                    address: u64::from(address.0),
                    size: 0, // Computed in `SymbolMap`
                });
            }
        }

        None
    }
}

struct PdbStreams<'d> {
    debug_info: Arc<pdb::DebugInformation<'d>>,
    type_info: pdb::TypeInformation<'d>,
    id_info: pdb::IdInformation<'d>,
    string_table: Option<pdb::StringTable<'d>>,

    pdb: Arc<RwLock<Pdb<'d>>>,

    /// ModuleInfo objects are stored on this object (outside PdbDebugInfo) so that the
    /// PdbDebugInfo can store a TypeFormatter, which has a lifetime dependency on its
    /// ModuleProvider, which is this PdbStreams. This is so that TypeFormatter can cache
    /// CrossModuleImports inside itself, and those have a lifetime dependency on the
    /// ModuleInfo.
    module_infos: FrozenMap<usize, Box<ModuleInfo<'d>>>,
}

impl<'d> PdbStreams<'d> {
    fn from_pdb(pdb: &PdbObject<'d>) -> Result<Self, PdbError> {
        let mut p = pdb.pdb.write();

        // PDB::string_table errors if the named stream for the string table is not present.
        // However, this occurs in certain PDBs and does not automatically indicate an error.
        let string_table = match p.string_table() {
            Ok(string_table) => Some(string_table),
            Err(pdb::Error::StreamNameNotFound) => None,
            Err(e) => return Err(e.into()),
        };

        Ok(Self {
            string_table,
            debug_info: pdb.debug_info.clone(),
            type_info: p.type_information()?,
            id_info: p.id_information()?,
            pdb: pdb.pdb.clone(),
            module_infos: FrozenMap::new(),
        })
    }
}

impl<'d> pdb_addr2line::ModuleProvider<'d> for PdbStreams<'d> {
    fn get_module_info(
        &self,
        module_index: usize,
        module: &Module,
    ) -> Result<Option<&ModuleInfo<'d>>, pdb::Error> {
        if let Some(module_info) = self.module_infos.get(&module_index) {
            return Ok(Some(module_info));
        }

        let mut pdb = self.pdb.write();
        Ok(pdb.module_info(module)?.map(|module_info| {
            self.module_infos
                .insert(module_index, Box::new(module_info))
        }))
    }
}

struct PdbDebugInfo<'d> {
    /// The streams, to load module streams on demand.
    streams: &'d PdbStreams<'d>,
    /// OMAP structure to map reordered sections to RVAs.
    address_map: pdb::AddressMap<'d>,
    /// String table for name lookups.
    string_table: Option<&'d pdb::StringTable<'d>>,
    /// Type formatter for function name strings.
    type_formatter: pdb_addr2line::TypeFormatter<'d, 'd>,
}

impl<'d> PdbDebugInfo<'d> {
    fn build(pdb: &PdbObject<'d>, streams: &'d PdbStreams<'d>) -> Result<Self, PdbError> {
        let modules = streams.debug_info.modules()?.collect::<Vec<_>>()?;

        // Avoid deadlocks by only covering the two access to the address map. For
        // instance, `pdb.symbol_map()` requires a mutable borrow of the PDB as well.
        let mut p = pdb.pdb.write();
        let address_map = p.address_map()?;

        drop(p);

        Ok(PdbDebugInfo {
            address_map,
            streams,
            string_table: streams.string_table.as_ref(),
            type_formatter: pdb_addr2line::TypeFormatter::new_from_parts(
                streams,
                modules,
                &streams.debug_info,
                &streams.type_info,
                &streams.id_info,
                streams.string_table.as_ref(),
                Default::default(),
            )?,
        })
    }

    /// Returns an iterator over all compilation units (modules).
    fn units(&'d self) -> PdbUnitIterator<'_> {
        PdbUnitIterator {
            debug_info: self,
            index: 0,
        }
    }

    fn modules(&self) -> &[Module<'d>] {
        self.type_formatter.modules()
    }

    fn get_module(&'d self, index: usize) -> Result<Option<&ModuleInfo<'_>>, PdbError> {
        // Silently ignore module references out-of-bound
        let module = match self.modules().get(index) {
            Some(module) => module,
            None => return Ok(None),
        };

        Ok(self.streams.get_module_info(index, module)?)
    }

    fn file_info(&self, file_info: pdb::FileInfo<'d>) -> Result<FileInfo<'_>, PdbError> {
        let file_path = match self.string_table {
            Some(string_table) => file_info.name.to_raw_string(string_table)?,
            None => "".into(),
        };

        Ok(FileInfo::from_path(file_path.as_bytes()))
    }
}

impl<'slf, 'd: 'slf> AsSelf<'slf> for PdbDebugInfo<'d> {
    type Ref = PdbDebugInfo<'slf>;

    fn as_self(&'slf self) -> &Self::Ref {
        unsafe { std::mem::transmute(self) }
    }
}

/// Debug session for PDB objects.
pub struct PdbDebugSession<'d> {
    cell: SelfCell<Box<PdbStreams<'d>>, PdbDebugInfo<'d>>,
}

impl<'d> PdbDebugSession<'d> {
    fn build(pdb: &PdbObject<'d>) -> Result<Self, PdbError> {
        let streams = PdbStreams::from_pdb(pdb)?;
        let cell = SelfCell::try_new(Box::new(streams), |streams| {
            PdbDebugInfo::build(pdb, unsafe { &*streams })
        })?;

        Ok(PdbDebugSession { cell })
    }

    /// Returns an iterator over all source files in this debug file.
    pub fn files(&self) -> PdbFileIterator<'_> {
        PdbFileIterator {
            debug_info: self.cell.get(),
            units: self.cell.get().units(),
            files: pdb::FileIterator::default(),
            finished: false,
        }
    }

    /// Returns an iterator over all functions in this debug file.
    pub fn functions(&self) -> PdbFunctionIterator<'_> {
        PdbFunctionIterator {
            units: self.cell.get().units(),
            functions: Vec::new().into_iter(),
            finished: false,
        }
    }

    /// See [DebugSession::source_by_path] for more information.
    pub fn source_by_path(
        &self,
        _path: &str,
    ) -> Result<Option<SourceFileDescriptor<'_>>, PdbError> {
        Ok(None)
    }
}

impl<'session> DebugSession<'session> for PdbDebugSession<'_> {
    type Error = PdbError;
    type FunctionIterator = PdbFunctionIterator<'session>;
    type FileIterator = PdbFileIterator<'session>;

    fn functions(&'session self) -> Self::FunctionIterator {
        self.functions()
    }

    fn files(&'session self) -> Self::FileIterator {
        self.files()
    }

    fn source_by_path(&self, path: &str) -> Result<Option<SourceFileDescriptor<'_>>, Self::Error> {
        self.source_by_path(path)
    }
}

struct Unit<'s> {
    debug_info: &'s PdbDebugInfo<'s>,
    module_index: usize,
    module: &'s pdb::ModuleInfo<'s>,
}

impl<'s> Unit<'s> {
    fn load(
        debug_info: &'s PdbDebugInfo<'s>,
        module_index: usize,
        module: &'s pdb::ModuleInfo<'s>,
    ) -> Result<Self, PdbError> {
        Ok(Self {
            debug_info,
            module_index,
            module,
        })
    }

    fn collect_lines<I>(
        &self,
        mut line_iter: I,
        program: &LineProgram<'s>,
    ) -> Result<Vec<LineInfo<'s>>, PdbError>
    where
        I: FallibleIterator<Item = pdb::LineInfo>,
        PdbError: From<I::Error>,
    {
        let address_map = &self.debug_info.address_map;

        let mut lines = Vec::new();
        while let Some(line_info) = line_iter.next()? {
            let rva = match line_info.offset.to_rva(address_map) {
                Some(rva) => u64::from(rva.0),
                None => continue,
            };

            // skip 0-sized line infos
            let size = line_info.length.map(u64::from);
            if size == Some(0) {
                continue;
            }

            let file_info = program.get_file_info(line_info.file_index)?;

            lines.push(LineInfo {
                address: rva,
                size,
                file: self.debug_info.file_info(file_info)?,
                line: line_info.line_start.into(),
            });
        }
        lines.sort_by_key(|line| line.address);

        // Merge line infos that only differ in their `column` information, which we don't
        // care about. We only want to output line infos that differ in their file/line.
        lines.dedup_by(|current, prev| {
            // the records need to be consecutive to be able to merge
            let first_end = prev.size.and_then(|size| prev.address.checked_add(size));
            let is_consecutive = first_end == Some(current.address);
            // the line record points to the same file/line, so we want to merge/dedupe it
            if is_consecutive && prev.file == current.file && prev.line == current.line {
                prev.size = prev
                    .size
                    .map(|first_size| first_size.saturating_add(current.size.unwrap_or(0)));

                return true;
            }
            false
        });

        Ok(lines)
    }

    /// Sanitize the collected lines.
    ///
    /// This essentially filters out all the lines that lay outside of the function range.
    ///
    /// For example we have observed in a real-world pdb that has:
    /// - A function 0x33ea50 (size 0xc)
    /// - With one line record: 0x33e850 (size 0x26)
    /// The line record is completely outside the range of the function.
    fn sanitize_lines(func: &mut Function) {
        let fn_start = func.address;
        let fn_end = func.end_address();
        func.lines.retain(|line| {
            if line.address >= fn_end {
                return false;
            }
            let line_end = match line.size {
                Some(size) => line.address.saturating_add(size),
                None => return true,
            };
            line_end > fn_start
        });
    }

    fn handle_function(
        &self,
        offset: PdbInternalSectionOffset,
        len: u32,
        name: RawString<'s>,
        type_index: TypeIndex,
        program: &LineProgram<'s>,
    ) -> Result<Option<Function<'s>>, PdbError> {
        let address_map = &self.debug_info.address_map;

        // Translate the function's address to the PE's address space. If this fails, we're
        // likely dealing with an invalid function and can skip it.
        let address = match offset.to_rva(address_map) {
            Some(addr) => u64::from(addr.0),
            None => return Ok(None),
        };

        // Names from the private symbol table are generally demangled. They contain the path of the
        // scope and name of the function itself, including type parameters, and the parameter lists
        // are contained in the type info. We do not emit a return type.
        let formatter = &self.debug_info.type_formatter;
        let name = name.to_string();
        let name = Name::new(
            formatter
                .format_function(&name, self.module_index, type_index)
                .map(Cow::Owned)
                .unwrap_or(name),
            NameMangling::Unmangled,
            Language::Unknown,
        );

        let line_iter = program.lines_for_symbol(offset);
        let lines = self.collect_lines(line_iter, program)?;

        Ok(Some(Function {
            address,
            size: len.into(),
            name,
            compilation_dir: &[],
            lines,
            inlinees: Vec::new(),
            inline: false,
        }))
    }

    fn handle_procedure(
        &self,
        proc: &ProcedureSymbol<'s>,
        program: &LineProgram<'s>,
    ) -> Result<Option<Function<'s>>, PdbError> {
        self.handle_function(proc.offset, proc.len, proc.name, proc.type_index, program)
    }

    fn handle_separated_code(
        &self,
        proc: &ProcedureSymbol<'s>,
        sepcode: &SeparatedCodeSymbol,
        program: &LineProgram<'s>,
    ) -> Result<Option<Function<'s>>, PdbError> {
        self.handle_function(
            sepcode.offset,
            sepcode.len,
            proc.name,
            proc.type_index,
            program,
        )
    }

    fn handle_inlinee(
        &self,
        inline_site: InlineSiteSymbol<'s>,
        parent_offset: PdbInternalSectionOffset,
        inlinee: &pdb::Inlinee<'s>,
        program: &LineProgram<'s>,
    ) -> Result<Option<Function<'s>>, PdbError> {
        let line_iter = inlinee.lines(parent_offset, &inline_site);
        let lines = self.collect_lines(line_iter, program)?;

        // If there are no line records, skip this inline function completely. Apparently, it was
        // eliminated by the compiler, and cannot be hit by the program anymore. For `symbolic`,
        // such functions do not have any use.
        let start = match lines.first().map(|line| line.address) {
            Some(address) => address,
            None => return Ok(None),
        };

        let end = match lines
            .last()
            .map(|line| line.address + line.size.unwrap_or(1))
        {
            Some(address) => address,
            None => return Ok(None),
        };

        let formatter = &self.debug_info.type_formatter;
        let name = Name::new(
            formatter.format_id(self.module_index, inline_site.inlinee)?,
            NameMangling::Unmangled,
            Language::Unknown,
        );

        Ok(Some(Function {
            address: start,
            size: end - start,
            name,
            compilation_dir: &[],
            lines,
            inlinees: Vec::new(),
            inline: true,
        }))
    }

    fn functions(&self) -> Result<Vec<Function<'s>>, PdbError> {
        let program = self.module.line_program()?;
        let mut symbols = self.module.symbols()?;

        // Depending on the compiler version, the inlinee table might not be sorted. Since constant
        // search through inlinees is too slow (due to repeated parsing), but Inlinees are rather
        // small structures, it is relatively cheap to collect them into an in-memory index.
        let inlinees: BTreeMap<_, _> = self
            .module
            .inlinees()?
            .map(|i| Ok((i.index(), i)))
            .collect()?;

        let mut depth = 0;
        let mut inc_next = false;
        let mut skipped_depth = None;

        let mut functions = Vec::new();
        let mut stack = FunctionStack::new();
        let mut proc_offsets = SmallVec::<[_; 3]>::new();
        let mut last_proc = None;

        while let Some(symbol) = symbols.next()? {
            if inc_next {
                depth += 1;
            }

            inc_next = symbol.starts_scope();
            if symbol.ends_scope() {
                depth -= 1;

                if proc_offsets.last().map_or(false, |&(d, _)| d >= depth) {
                    proc_offsets.pop();
                }
            }

            // If we're navigating within a skipped function (see below), we can ignore this
            // entry completely. Otherwise, we've moved out of any skipped function and can
            // reset the stored depth.
            match skipped_depth {
                Some(skipped) if depth > skipped => continue,
                _ => skipped_depth = None,
            }

            // Flush all functions out that exceed the current iteration depth. Since we
            // encountered a symbol at this level, there will be no more inlinees to the
            // previous function at the same level or any of it's children.
            if symbol.ends_scope() {
                stack.flush(depth, &mut functions);
            }

            let function = match symbol.parse() {
                Ok(SymbolData::Procedure(proc)) => {
                    proc_offsets.push((depth, proc.offset));
                    let function = self.handle_procedure(&proc, &program)?;
                    last_proc = Some(proc);
                    function
                }
                Ok(SymbolData::SeparatedCode(sepcode)) => match last_proc.as_ref() {
                    Some(last_proc) if last_proc.offset == sepcode.parent_offset => {
                        self.handle_separated_code(last_proc, &sepcode, &program)?
                    }
                    _ => continue,
                },
                Ok(SymbolData::InlineSite(site)) => {
                    let parent_offset = proc_offsets
                        .last()
                        .map(|&(_, offset)| offset)
                        .ok_or(PdbErrorKind::UnexpectedInline)?;

                    // We can assume that inlinees will be listed in the inlinee table. If missing,
                    // skip silently instead of erroring out. Missing a single inline function is
                    // more acceptable in such a case than halting iteration completely.
                    if let Some(inlinee) = inlinees.get(&site.inlinee) {
                        // We have seen that the MSVC Compiler `19.16` (VS 2017) can output
                        // `ChangeFile` annotations which are not properly aligned to the beginning
                        // of a file checksum, leading to `UnimplementedFileChecksumKind` errors.
                        // Investigation showed that this can happen for inlined `{ctor}` functions,
                        // but there are no clear leads to why that might have happened, and how to
                        // recover from these broken annotations.
                        // For that reason, we skip these inlinees completely so we do not fail
                        // processing the complete pdb file.
                        self.handle_inlinee(site, parent_offset, inlinee, &program)
                            .ok()
                            .flatten()
                    } else {
                        None
                    }
                }
                // We need to ignore errors here since the PDB crate does not yet implement all
                // symbol types. Instead of erroring too often, it's better to swallow these.
                _ => continue,
            };

            match function {
                Some(mut function) => {
                    Self::sanitize_lines(&mut function);
                    // TODO: figure out what to do with functions that have no more lines
                    // after sanitization
                    stack.push(depth, function)
                }
                None => skipped_depth = Some(depth),
            }
        }

        // We're done, flush the remaining stack.
        stack.flush(0, &mut functions);

        Ok(functions)
    }
}

struct PdbUnitIterator<'s> {
    debug_info: &'s PdbDebugInfo<'s>,
    index: usize,
}

impl<'s> Iterator for PdbUnitIterator<'s> {
    type Item = Result<Unit<'s>, PdbError>;

    fn next(&mut self) -> Option<Self::Item> {
        let debug_info = self.debug_info;
        while self.index < debug_info.modules().len() {
            let module_index = self.index;
            let result = debug_info.get_module(module_index);
            self.index += 1;

            let module = match result {
                Ok(Some(module)) => module,
                Ok(None) => continue,
                Err(error) => return Some(Err(error)),
            };

            return Some(Unit::load(debug_info, module_index, module));
        }

        None
    }
}

/// An iterator over source files in a Pdb object.
pub struct PdbFileIterator<'s> {
    debug_info: &'s PdbDebugInfo<'s>,
    units: PdbUnitIterator<'s>,
    files: pdb::FileIterator<'s>,
    finished: bool,
}

impl<'s> Iterator for PdbFileIterator<'s> {
    type Item = Result<FileEntry<'s>, PdbError>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.finished {
            return None;
        }

        loop {
            if let Some(file_result) = self.files.next().transpose() {
                let result = file_result
                    .map_err(|err| err.into())
                    .and_then(|i| self.debug_info.file_info(i))
                    .map(|info| FileEntry::new(Cow::default(), info));

                return Some(result);
            }

            let unit = match self.units.next() {
                Some(Ok(unit)) => unit,
                Some(Err(error)) => return Some(Err(error)),
                None => break,
            };

            let line_program = match unit.module.line_program() {
                Ok(line_program) => line_program,
                Err(error) => return Some(Err(error.into())),
            };

            self.files = line_program.files();
        }

        self.finished = true;
        None
    }
}

/// An iterator over functions in a PDB file.
pub struct PdbFunctionIterator<'s> {
    units: PdbUnitIterator<'s>,
    functions: std::vec::IntoIter<Function<'s>>,
    finished: bool,
}

impl<'s> Iterator for PdbFunctionIterator<'s> {
    type Item = Result<Function<'s>, PdbError>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.finished {
            return None;
        }

        loop {
            if let Some(func) = self.functions.next() {
                return Some(Ok(func));
            }

            let unit = match self.units.next() {
                Some(Ok(unit)) => unit,
                Some(Err(error)) => return Some(Err(error)),
                None => break,
            };

            self.functions = match unit.functions() {
                Ok(functions) => functions.into_iter(),
                Err(error) => return Some(Err(error)),
            };
        }

        self.finished = true;
        None
    }
}

impl std::iter::FusedIterator for PdbFunctionIterator<'_> {}