1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
//! # Simple yet efficient video encoding
//!
//! This is a lossless video codec, aiming at screen capture and anything else you'd want to format in PNG instead of JPEG. It is the equivalent of PNG for video.
//!
//! As PNG, there are two steps: filtering, and compressing.
//!
//! The filter transforms the pixels into the differences between adjacent pixels. This way adjacent pixels with the same color have the value 0, and linear gradients become constant series. The filtered image is now easier to compress with a conventional algorithm.
//!
//! The difference with PNG is that the filter also takes the difference across time, so that if the frames are almost the same, they will be full of zeros.
//!
//! ⚠ **unstable, not benchmarked, not fuzz-tested**... but promising 😎
//!
//! ```rust
//! let mut buf = Vec::new();
//! let mut encoder = syeve::Encoder::new((640, 480), 3, syeve::Compression::Brotli(4), 30);
//! let mut decoder = syeve::Decoder::new();
//!
//! for i in 0..10 {
//!     let mut frame: Vec<u8> = (0..640*480*3).map(|j| ((i+j)%256) as u8).collect(); // dummy frame
//!     let frame_bak = frame.clone();
//!
//!     encoder.encode(&mut frame, &mut buf).unwrap();
//!
//!     // [...] Transfer `buf` to decoder (e.g. UDP or file storage or avian carrier)
//!
//!     let frame = decoder.decode(&buf).unwrap().pixels;
//!
//!     assert_eq!(frame, frame_bak);
//!
//!     buf.clear();
//! }
//! ```

mod filter;

use std::{
	convert::TryInto,
	io::{Read, Write},
};

#[cfg(feature = "deflate")]
pub use deflate::Compression as Deflate;

/// Compression algo
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Compression {
	Brotli(
		/// From 0 (faster) to 11 (better)
		u32,
	),
	#[cfg(feature = "deflate")]
	Deflate(deflate::Compression),
}

impl Default for Compression {
	fn default() -> Self {
		Self::Brotli(4)
	}
}

#[derive(Debug)]
pub enum EncodeError {
	CompressError(std::io::Error),
	WriteError(std::io::Error),
}

#[derive(Clone)]
pub struct Encoder {
	compression: Compression,
	frame_number: u32,
	old_pixels: Vec<u8>,
	pixel_size: usize,
	seq_len: u32,
	seq_number: u32,
	size: (usize, usize),
}

impl Encoder {
	/// Creates a new encoder
	///
	/// `pixel_size` is the number of bytes per pixel.
	///
	/// Because each frame is encoded relatively to the previous frame, a lost frame can cause all the next frames to be wrong. Hence, we need to periodically send a frame that does not depend on the previous frame. `seq_len` (sequence length) is the number of frames between these "independent" frames. The higher, the longer glitches can remain. The lower, the more bandwidth will be used.
	pub fn new(
		size: (usize, usize),
		pixel_size: usize,
		compression: Compression,
		seq_len: u32,
	) -> Self {
		Self {
			compression,
			frame_number: 0,
			old_pixels: vec![0; size.0 * size.1 * pixel_size],
			pixel_size,
			seq_len,
			seq_number: 0,
			size,
		}
	}

	pub fn set_compression(&mut self, compression: Compression) {
		self.compression = compression;
	}

	pub fn set_frame_settings(&mut self, pixel_size: usize, size: (usize, usize)) {
		self.seq_number = self.seq_number.wrapping_add(1);
		self.frame_number = 0;
		self.size = size;
		self.pixel_size = pixel_size;
		self.old_pixels = vec![0; size.0 * size.1 * pixel_size];
	}

	pub fn set_seq_len(&mut self, seq_len: u32) {
		self.seq_len = seq_len;
	}

	/// If the decoder may have already read data from another encoder, then you should ensure to set a different sequence number than the last one received by the decoder from the previous encoder. Otherwise, the decoder may think it's the same sequence, and won't decode the frame (thus possibly the entire sequence) correctly. If you don't know, just use random.
	pub fn set_seq_number(&mut self, seq_number: u32) {
		self.seq_number = seq_number;
	}

	pub fn get_compression(&self) -> &Compression {
		&self.compression
	}

	pub fn get_frame_number(&self) -> u32 {
		self.frame_number
	}

	pub fn get_pixel_size(&self) -> usize {
		self.pixel_size
	}

	pub fn get_seq_len(&self) -> u32 {
		self.seq_len
	}

	pub fn get_seq_number(&self) -> u32 {
		self.seq_number
	}

	pub fn get_size(&self) -> (usize, usize) {
		self.size
	}

	/// Encode raw frame `pixels` into `buf`
	pub fn encode<W: Write>(&mut self, pixels: &mut [u8], mut buf: W) -> Result<(), EncodeError> {
		assert_eq!(pixels.len(), self.old_pixels.len());

		if self.frame_number >= self.seq_len {
			self.frame_number = 0;
			self.seq_number = self.seq_number.wrapping_add(1);
			self.old_pixels.fill(0);
		}

		#[cfg(feature = "simd")]
		{
			if self.pixel_size % 4 == 0 {
				filter::filter_simd_4(self.size, self.pixel_size, pixels, &mut self.old_pixels);
			} else if self.pixel_size % 3 == 0 {
				filter::filter_simd_3(self.size, self.pixel_size, pixels, &mut self.old_pixels);
			} else {
				filter::filter(self.size, self.pixel_size, pixels, &mut self.old_pixels);
			}
		}
		#[cfg(not(feature = "simd"))]
		filter::filter(self.size, self.pixel_size, pixels, &mut self.old_pixels);

		buf.write(&self.seq_number.to_be_bytes())
			.map_err(EncodeError::WriteError)?;
		buf.write(&self.frame_number.to_be_bytes())
			.map_err(EncodeError::WriteError)?;
		buf.write(&(self.size.0 as u32).to_be_bytes())
			.map_err(EncodeError::WriteError)?;
		buf.write(&(self.size.1 as u32).to_be_bytes())
			.map_err(EncodeError::WriteError)?;
		buf.write(&[self.pixel_size as u8])
			.map_err(EncodeError::WriteError)?;

		match self.compression {
			Compression::Brotli(level) => {
				buf.write(&[1]).map_err(EncodeError::WriteError)?;
				let mut compressor = brotli2::write::BrotliEncoder::new(buf, level);
				compressor
					.write_all(pixels)
					.map_err(EncodeError::CompressError)?;
				compressor.flush().map_err(EncodeError::CompressError)?;
			}
			#[cfg(feature = "deflate")]
			Compression::Deflate(level) => {
				buf.write(&[2]).map_err(EncodeError::WriteError)?;
				let mut compressor = deflate::write::DeflateEncoder::new(buf, level);
				compressor
					.write_all(pixels)
					.map_err(EncodeError::CompressError)?;
				compressor.finish().map_err(EncodeError::CompressError)?;
			}
		}

		self.frame_number = self.frame_number.wrapping_add(1);

		Ok(())
	}
}

#[derive(Debug)]
pub enum DecodeError {
	BadDataLength,
	BadHeader,
	DecompressError(std::io::Error),
	UnknownCompression,
}

/// Describes the trust we can have in the correctness of a decoded frame
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum DecodedFrameStatus {
	/// Some frames must have been lost. The frame may be incorrect, but the error may be little, especially if the image is static.
	MissedFrame,
	/// The frame seems correct
	Ok,
	/// The encoder has probably done something against the protocol. The frame is probably incorrect.
	Wtf,
}

#[derive(Clone, Debug)]
pub struct DecodedFrame {
	pub frame_number: u32,
	pub pixel_size: usize,
	pub pixels: Vec<u8>,
	pub seq_number: u32,
	pub size: (usize, usize),
	pub status: DecodedFrameStatus,
}

#[derive(Clone)]
pub struct Decoder {
	frame_number: u32,
	old_pixels: Vec<u8>,
	seq_number: u32,
}

impl Decoder {
	pub fn new() -> Self {
		Self {
			frame_number: 0,
			old_pixels: Vec::new(),
			seq_number: u32::MAX,
		}
	}

	pub fn decode(&mut self, data: &[u8]) -> Result<DecodedFrame, DecodeError> {
		if data.len() < 18 {
			return Err(DecodeError::BadHeader);
		}

		let seq_number = u32::from_be_bytes(data[0..4].try_into().unwrap()) as u32;
		let frame_number = u32::from_be_bytes(data[4..8].try_into().unwrap()) as u32;
		let size = (
			u32::from_be_bytes(data[8..12].try_into().unwrap()) as usize,
			u32::from_be_bytes(data[12..16].try_into().unwrap()) as usize,
		);
		let pixel_size = data[16] as usize;
		let compression_algo = data[17];
		let pixels_compressed = &data[18..];

		let resize = size.0 * size.1 * pixel_size != self.old_pixels.len();
		if resize {
			self.frame_number = 0;
			self.old_pixels = vec![0; size.0 * size.1 * pixel_size];
		} else if self.seq_number != seq_number {
			self.old_pixels.fill(0);
		}

		let mut pixels = Vec::with_capacity(size.0 * size.1 * pixel_size);

		match compression_algo {
			1 => {
				let mut decompressor = brotli2::read::BrotliDecoder::new(pixels_compressed);
				decompressor
					.read_to_end(&mut pixels)
					.map_err(DecodeError::DecompressError)?;
			}
			#[cfg(feature = "inflate")]
			2 => {
				let mut decompressor = inflate::InflateWriter::new(&mut pixels);
				decompressor
					.write(pixels_compressed)
					.map_err(DecodeError::DecompressError)?;
				decompressor
					.finish()
					.map_err(DecodeError::DecompressError)?;
			}
			_ => return Err(DecodeError::UnknownCompression),
		}

		if pixels.len() != size.0 * size.1 * pixel_size {
			return Err(DecodeError::BadDataLength);
		}

		#[cfg(feature = "simd")]
		{
			if pixel_size % 4 == 0 {
				filter::unfilter_simd_4(size, pixel_size, &mut pixels, &mut self.old_pixels);
			} else if pixel_size % 3 == 0 {
				filter::unfilter_simd_3(size, pixel_size, &mut pixels, &mut self.old_pixels);
			} else {
				filter::unfilter(size, pixel_size, &mut pixels, &mut self.old_pixels);
			}
		}
		#[cfg(not(feature = "simd"))]
		filter::unfilter(size, pixel_size, &mut pixels, &mut self.old_pixels);

		let ret = Ok(DecodedFrame {
			seq_number,
			frame_number,
			pixel_size,
			size,
			status: if frame_number == 0 {
				if self.seq_number == seq_number {
					if self.frame_number.wrapping_add(1) == frame_number {
						if resize {
							DecodedFrameStatus::Wtf
						} else {
							DecodedFrameStatus::Ok
						}
					} else {
						DecodedFrameStatus::MissedFrame
					}
				} else {
					DecodedFrameStatus::Ok
				}
			} else if self.seq_number == seq_number {
				if resize {
					DecodedFrameStatus::Wtf
				} else if self.frame_number.wrapping_add(1) == frame_number {
					DecodedFrameStatus::Ok
				} else {
					DecodedFrameStatus::MissedFrame
				}
			} else {
				DecodedFrameStatus::MissedFrame
			},
			pixels: pixels.to_vec(),
		});
		self.seq_number = seq_number;
		self.frame_number = frame_number;
		ret
	}
}

impl Default for Decoder {
	fn default() -> Self {
		Self::new()
	}
}

#[cfg(test)]
mod test {
	use super::*;

	use rand::{
		distributions::{Distribution, Uniform},
		Fill,
	};

	#[test]
	fn test_image_reversibility() {
		let maxpixels = 100;

		let mut pixels = vec![0; maxpixels * maxpixels * 4];
		let mut pixels_save = pixels.clone();
		let size_range = Uniform::new(2, maxpixels);
		let pixel_size_range = Uniform::new(1, 5);
		let mut rng = rand::thread_rng();

		let mut compressions = Vec::new();
		compressions.push(Compression::Brotli(3));
		#[cfg(feature = "inflate")]
		compressions.push(Compression::Deflate(Deflate::Fast));

		for compression in compressions {
			for _ in 0..50 {
				let size = (size_range.sample(&mut rng), size_range.sample(&mut rng));
				let pixel_size = pixel_size_range.sample(&mut rng);

				let mut encoder = Encoder::new(size, pixel_size, compression.clone(), 25);
				let mut decoder = Decoder::new();

				for _ in 0..100 {
					pixels[0..size.0 * size.1 * pixel_size]
						.try_fill(&mut rng)
						.unwrap();
					pixels_save[0..size.0 * size.1 * pixel_size]
						.copy_from_slice(&pixels[0..size.0 * size.1 * pixel_size]);
					let mut data = Vec::new();
					encoder
						.encode(&mut pixels[0..size.0 * size.1 * pixel_size], &mut data)
						.unwrap();
					let dec_frame = decoder.decode(&mut data).unwrap();
					assert_eq!(dec_frame.status, DecodedFrameStatus::Ok);
					assert_eq!(dec_frame.size, size);
					assert_eq!(dec_frame.pixel_size, pixel_size);
					assert_eq!(dec_frame.pixels.len(), size.0 * size.1 * pixel_size);
					assert_eq!(
						&dec_frame.pixels,
						&pixels_save[0..size.0 * size.1 * pixel_size]
					);
				}
			}
		}
	}

	#[test]
	fn test_missed_frames() {
		let mut encoder = Encoder::new((1, 1), 1, Compression::Brotli(3), 2);
		let mut decoder = Decoder::new();
		let mut buf = Vec::new();

		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::Ok
		);
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::Ok
		);
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::Ok
		);
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::Ok
		);
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::MissedFrame
		);
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::Ok
		);
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		buf.clear();
		encoder.encode(&mut [0], &mut buf).unwrap();
		assert_eq!(
			dbg!(decoder.decode(&mut buf).unwrap()).status,
			DecodedFrameStatus::Ok
		);
	}
}