1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
//! Reactive utilities for dealing with lists and iterables.

use std::hash::Hash;
use std::mem;
use std::rc::Rc;

use ahash::AHashMap;

use crate::*;

/// Function that maps a `Vec` to another `Vec` via a map function. The mapped `Vec` is lazy
/// computed, meaning that it's value will only be updated when requested. Modifications to the
/// input `Vec` are diffed using keys to prevent recomputing values that have not changed.
///
/// This function is the underlying utility behind `Keyed`.
///
/// # Params
/// * `list` - The list to be mapped. The list must be a [`ReadSignal`] (obtained from a [`Signal`])
///   and therefore reactive.
/// * `map_fn` - A closure that maps from the input type to the output type.
/// * `key_fn` - A closure that returns an _unique_ key to each entry.
///
///  _Credits: Based on TypeScript implementation in <https://github.com/solidjs/solid>_
pub fn map_keyed<'a, T, K, U>(
    cx: Scope<'a>,
    list: &'a ReadSignal<Vec<T>>,
    map_fn: impl for<'child_lifetime> Fn(BoundedScope<'child_lifetime, 'a>, T) -> U + 'a,
    key_fn: impl Fn(&T) -> K + 'a,
) -> &'a ReadSignal<Vec<U>>
where
    T: PartialEq + Clone,
    K: Eq + Hash,
    U: Clone,
{
    // Previous state used for diffing.
    let mut items = Rc::new(Vec::new());

    let mut mapped: Vec<U> = Vec::new();
    let mut mapped_tmp: Vec<Option<U>> = Vec::new();

    let mut disposers: Vec<Option<ScopeDisposer<'a>>> = Vec::new();
    let mut disposers_tmp: Vec<Option<ScopeDisposer<'a>>> = Vec::new();

    let signal = create_signal(cx, Vec::new());

    // Diff and update signal each time list is updated.
    create_effect(cx, move || {
        let new_items = list.get();
        if new_items.is_empty() {
            // Fast path for removing all items.
            for dis in mem::take(&mut disposers) {
                unsafe { dis.unwrap().dispose() };
            }
            mapped = Vec::new();
        } else if items.is_empty() {
            // Fast path for new create.
            mapped.reserve(new_items.len());
            disposers.reserve(new_items.len());

            for new_item in new_items.iter().cloned() {
                let new_disposer = create_child_scope(cx, |cx| mapped.push(map_fn(cx, new_item)));
                disposers.push(Some(new_disposer));
            }
        } else {
            debug_assert!(
                !new_items.is_empty() && !items.is_empty(),
                "new_items.is_empty() and items.is_empty() are special cased"
            );

            mapped_tmp.clear();
            mapped_tmp.resize(new_items.len(), None);

            disposers_tmp.clear();
            disposers_tmp.resize_with(new_items.len(), || None);

            // Skip common prefix.
            let min_len = usize::min(items.len(), new_items.len());
            let start = items
                .iter()
                .zip(new_items.iter())
                .position(|(a, b)| a != b)
                .unwrap_or(min_len);
            debug_assert!(
                (items.get(start).is_none() && new_items.get(start).is_none())
                    || (items.get(start) != new_items.get(start)),
                "start is the first index where items[start] != new_items[start]"
            );

            // Skip common suffix.
            let mut end = items.len();
            let mut new_end = new_items.len();
            while end > start && new_end > start && items[end - 1] == new_items[new_end - 1] {
                end -= 1;
                new_end -= 1;
                mapped_tmp[new_end] = Some(mapped[end].clone());
                disposers_tmp[new_end] = disposers[end].take();
            }
            debug_assert!(
                    if end != 0 && new_end != 0 {
                        (end == items.len() && new_end == new_items.len())
                            || (items[end - 1] != new_items[new_end - 1])
                    } else {
                        true
                    },
                    "end and new_end are the last indexes where items[end - 1] != new_items[new_end - 1]"
                );

            // 0) Prepare a map of indices in newItems. Scan backwards so we encounter them in
            // natural order.
            let mut new_indices = AHashMap::with_capacity(new_end - start);

            // Indexes for new_indices_next are shifted by start because values at 0..start are
            // always None.
            let mut new_indices_next = vec![None; new_end - start];
            for j in (start..new_end).rev() {
                let item = &new_items[j];
                let i = new_indices.get(&key_fn(item));
                new_indices_next[j - start] = i.copied();
                new_indices.insert(key_fn(item), j);
            }

            // 1) Step through old items and see if they can be found in new set; if so, mark
            // them as moved.
            for i in start..end {
                let item = &items[i];
                if let Some(j) = new_indices.get(&key_fn(item)).copied() {
                    // Moved. j is index of item in new_items.
                    mapped_tmp[j] = Some(mapped[i].clone());
                    disposers_tmp[j] = disposers[i].take();
                    new_indices_next[j - start].and_then(|j| new_indices.insert(key_fn(item), j));
                } else {
                    // Create new.
                    unsafe { disposers[i].take().unwrap().dispose() };
                }
            }

            // 2) Set all the new values, pulling from the moved array if copied, otherwise
            // entering the new value.
            for j in start..new_items.len() {
                if matches!(mapped_tmp.get(j), Some(Some(_))) {
                    // Pull from moved array.
                    if j >= mapped.len() {
                        debug_assert_eq!(mapped.len(), j);
                        mapped.push(mapped_tmp[j].clone().unwrap());
                        disposers.push(disposers_tmp[j].take());
                    } else {
                        mapped[j] = mapped_tmp[j].clone().unwrap();
                        disposers[j] = disposers_tmp[j].take();
                    }
                } else {
                    // Create new value.
                    let mut tmp = None;
                    let new_item = new_items[j].clone();
                    let new_disposer =
                        create_child_scope(cx, |cx| tmp = Some(map_fn(cx, new_item)));
                    if mapped.len() > j {
                        mapped[j] = tmp.unwrap();
                        disposers[j] = Some(new_disposer);
                    } else {
                        mapped.push(tmp.unwrap());
                        disposers.push(Some(new_disposer));
                    }
                }
            }
        }

        // 3) In case the new set is shorter than the old, set the length of the mapped array.
        mapped.truncate(new_items.len());
        disposers.truncate(new_items.len());

        // 4) Save a copy of the mapped items for the next update.
        items = Rc::clone(&new_items);
        debug_assert!([items.len(), mapped.len(), disposers.len()]
            .iter()
            .all(|l| *l == new_items.len()));

        // 5) Update signal to trigger updates.
        signal.set(mapped.clone());
    });

    signal
}

/// Function that maps a `Vec` to another `Vec` via a map function. The mapped `Vec` is lazy
/// computed, meaning that it's value will only be updated when requested. Modifications to the
/// input `Vec` are diffed by index to prevent recomputing values that have not changed.
///
/// Generally, it is preferred to use [`map_keyed`] instead when a key function
/// is available.
///
/// This function is the underlying utility behind `Indexed`.
///
/// # Params
/// * `list` - The list to be mapped. The list must be a [`ReadSignal`] (obtained from a [`Signal`])
///   and therefore reactive.
/// * `map_fn` - A closure that maps from the input type to the output type.
pub fn map_indexed<'a, T, U>(
    cx: Scope<'a>,
    list: &'a ReadSignal<Vec<T>>,
    map_fn: impl for<'child_lifetime> Fn(BoundedScope<'child_lifetime, 'a>, T) -> U + 'a,
) -> &'a ReadSignal<Vec<U>>
where
    T: PartialEq + Clone,
    U: Clone,
{
    // Previous state used for diffing.
    let mut items = Rc::new(Vec::new());
    let mut mapped = Vec::new();
    let mut disposers: Vec<ScopeDisposer<'a>> = Vec::new();

    let signal = create_signal(cx, Vec::new());

    // Diff and update signal each time list is updated.
    create_effect(cx, move || {
        let new_items = list.get();

        if new_items.is_empty() {
            // Fast path for removing all items.
            for dis in mem::take(&mut disposers) {
                unsafe {
                    dis.dispose();
                }
            }
            items = Rc::new(Vec::new());
            mapped = Vec::new();
        } else {
            // Pre-allocate space needed
            if new_items.len() > items.len() {
                let new_count = new_items.len() - items.len();
                mapped.reserve(new_count);
                disposers.reserve(new_count);
            }

            for (i, new_item) in new_items.iter().cloned().enumerate() {
                let item = items.get(i);
                // We lift the equality out of the else if branch to satisfy borrow checker.
                let eqs = item != Some(&new_item);

                if item.is_none() || eqs {
                    let mut tmp = None;
                    let new_disposer =
                        create_child_scope(cx, |cx| tmp = Some(map_fn(cx, new_item)));
                    if item.is_none() {
                        mapped.push(tmp.unwrap());
                        disposers.push(new_disposer);
                    } else if eqs {
                        mapped[i] = tmp.unwrap();
                        let prev = mem::replace(&mut disposers[i], new_disposer);
                        unsafe {
                            prev.dispose();
                        }
                    }
                }
            }

            if new_items.len() < items.len() {
                for _i in new_items.len()..items.len() {
                    unsafe {
                        disposers.pop().unwrap().dispose();
                    }
                }
            }

            // In case the new set is shorter than the old, set the length of the mapped array.
            mapped.truncate(new_items.len());

            // Save a copy of the mapped items for the next update.
            items = Rc::clone(&new_items);
            debug_assert!([items.len(), mapped.len(), disposers.len()]
                .iter()
                .all(|l| *l == new_items.len()));
        }

        // Update signal to trigger updates.
        signal.set(mapped.clone());
    });

    signal
}

#[cfg(test)]
mod tests {
    use std::cell::Cell;

    use super::*;

    #[test]
    fn keyed() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let mapped = map_keyed(cx, a, |_, x| x * 2, |x| *x);
            assert_eq!(*mapped.get(), vec![2, 4, 6]);

            a.set(vec![1, 2, 3, 4]);
            assert_eq!(*mapped.get(), vec![2, 4, 6, 8]);

            a.set(vec![2, 2, 3, 4]);
            assert_eq!(*mapped.get(), vec![4, 4, 6, 8]);
        });
    }

    #[test]
    fn keyed_recompute_everything() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let mapped = map_keyed(cx, a, |_, x| x * 2, |x| *x);
            assert_eq!(*mapped.get(), vec![2, 4, 6]);

            a.set(vec![4, 5, 6]);
            assert_eq!(*mapped.get(), vec![8, 10, 12]);
        });
    }

    /// Test fast path for clearing Vec.
    #[test]
    fn keyed_clear() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let mapped = map_keyed(cx, a, |_, x| x * 2, |x| *x);

            a.set(Vec::new());
            assert_eq!(*mapped.get(), Vec::<i32>::new());
        });
    }

    /// Test that using [`Scope::map_keyed`] will reuse previous computations.
    #[test]
    fn keyed_use_previous_computation() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let counter = Rc::new(Cell::new(0));
            let mapped = map_keyed(
                cx,
                a,
                {
                    let counter = Rc::clone(&counter);
                    move |_, _| {
                        counter.set(counter.get() + 1);
                        counter.get()
                    }
                },
                |x| *x,
            );
            assert_eq!(*mapped.get(), vec![1, 2, 3]);

            a.set(vec![1, 2]);
            assert_eq!(*mapped.get(), vec![1, 2]);

            a.set(vec![1, 2, 4]);
            assert_eq!(*mapped.get(), vec![1, 2, 4]);

            a.set(vec![1, 2, 3, 4]);
            assert_eq!(*mapped.get(), vec![1, 2, 5, 4]);
        });
    }

    #[test]
    fn keyed_call_cleanup_on_remove() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let counter = Rc::new(Cell::new(0));
            let _mapped = map_keyed(
                cx,
                a,
                {
                    let counter = Rc::clone(&counter);
                    move |cx, _| {
                        let counter = Rc::clone(&counter);
                        on_cleanup(cx, move || {
                            counter.set(counter.get() + 1);
                        });
                    }
                },
                |x| *x,
            );
            assert_eq!(counter.get(), 0, "no cleanup yet");

            a.set(vec![1, 2]);
            assert_eq!(counter.get(), 1);

            a.set(vec![1, 2, 3]);
            assert_eq!(counter.get(), 1);

            a.set(vec![1, 3]);
            assert_eq!(counter.get(), 2);
        });
    }

    #[test]
    fn keyed_call_cleanup_on_remove_all() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let counter = Rc::new(Cell::new(0));
            let _mapped = map_keyed(
                cx,
                a,
                {
                    let counter = Rc::clone(&counter);
                    move |cx, _| {
                        let counter = Rc::clone(&counter);
                        on_cleanup(cx, move || {
                            counter.set(counter.get() + 1);
                        })
                    }
                },
                |x| *x,
            );
            assert_eq!(counter.get(), 0, "no cleanup yet");

            a.set(vec![]);
            assert_eq!(counter.get(), 3);
        });
    }

    #[test]
    fn indexed() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let mapped = map_indexed(cx, a, |_, x| x * 2);
            assert_eq!(*mapped.get(), vec![2, 4, 6]);

            a.set(vec![1, 2, 3, 4]);
            assert_eq!(*mapped.get(), vec![2, 4, 6, 8]);

            a.set(vec![2, 2, 3, 4]);
            assert_eq!(*mapped.get(), vec![4, 4, 6, 8]);
        });
    }

    /// Test fast path for clearing Vec.
    #[test]
    fn indexed_clear() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let mapped = map_indexed(cx, a, |_, x| x * 2);

            a.set(Vec::new());
            assert_eq!(*mapped.get(), Vec::<i32>::new());
        });
    }

    /// Test that result of mapped function can be listened to.
    #[test]
    fn indexed_react() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let mapped = map_indexed(cx, a, |_, x| x * 2);

            let counter = create_signal(cx, 0);
            create_effect(cx, || {
                counter.set(*counter.get_untracked() + 1);
                mapped.track();
            });

            assert_eq!(*counter.get(), 1);
            a.set(vec![1, 2, 3, 4]);
            assert_eq!(*counter.get(), 2);
        });
    }

    /// Test that using [`map_indexed`] will reuse previous computations.
    #[test]
    fn indexed_use_previous_computation() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let counter = Rc::new(Cell::new(0));
            let mapped = map_indexed(cx, a, {
                let counter = Rc::clone(&counter);
                move |_, _| {
                    counter.set(counter.get() + 1);
                    counter.get()
                }
            });
            assert_eq!(*mapped.get(), vec![1, 2, 3]);

            a.set(vec![1, 2]);
            assert_eq!(*mapped.get(), vec![1, 2]);

            a.set(vec![1, 2, 4]);
            assert_eq!(*mapped.get(), vec![1, 2, 4]);

            a.set(vec![1, 3, 4]);
            assert_eq!(*mapped.get(), vec![1, 5, 4]);
        });
    }

    #[test]
    fn indexed_call_cleanup_on_remove() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let counter = Rc::new(Cell::new(0));
            let _mapped = map_indexed(cx, a, {
                let counter = Rc::clone(&counter);
                move |cx, _| {
                    let counter = Rc::clone(&counter);
                    on_cleanup(cx, move || {
                        counter.set(counter.get() + 1);
                    });
                }
            });
            assert_eq!(counter.get(), 0, "no cleanup yet");

            a.set(vec![1, 2]);
            assert_eq!(counter.get(), 1);

            a.set(vec![1, 2, 3]);
            assert_eq!(counter.get(), 1);

            a.set(vec![1, 3]);
            assert_eq!(counter.get(), 3);
        });
    }

    #[test]
    fn indexed_call_cleanup_on_remove_all() {
        create_scope_immediate(|cx| {
            let a = create_signal(cx, vec![1, 2, 3]);
            let counter = Rc::new(Cell::new(0));
            let _mapped = map_indexed(cx, a, {
                let counter = Rc::clone(&counter);
                move |cx, _| {
                    let counter = Rc::clone(&counter);
                    on_cleanup(cx, move || {
                        counter.set(counter.get() + 1);
                    })
                }
            });
            assert_eq!(counter.get(), 0, "no cleanup yet");

            a.set(vec![]);
            assert_eq!(counter.get(), 3);
        });
    }
}