1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use crate::jsx::JSXText;
use num_bigint::BigInt as BigIntValue;
use serde::{Deserialize, Serialize};
use std::{
    fmt::{self, Display, Formatter},
    hash::{Hash, Hasher},
    mem,
};
use swc_atoms::{js_word, JsWord};
use swc_common::{ast_node, util::take::Take, EqIgnoreSpan, Span, DUMMY_SP};

#[ast_node]
#[derive(Eq, Hash, EqIgnoreSpan)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum Lit {
    #[tag("StringLiteral")]
    Str(Str),

    #[tag("BooleanLiteral")]
    Bool(Bool),

    #[tag("NullLiteral")]
    Null(Null),

    #[tag("NumericLiteral")]
    Num(Number),

    #[tag("BigIntLiteral")]
    BigInt(BigInt),

    #[tag("RegExpLiteral")]
    Regex(Regex),

    #[tag("JSXText")]
    JSXText(JSXText),
}

#[ast_node("BigIntLiteral")]
#[derive(Eq, Hash, EqIgnoreSpan)]
pub struct BigInt {
    pub span: Span,
    pub value: BigIntValue,
}

#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for BigInt {
    fn arbitrary(u: &mut arbitrary::Unstructured<'_>) -> arbitrary::Result<Self> {
        let span = u.arbitrary()?;
        let value = u.arbitrary::<usize>()?.into();

        Ok(Self { span, value })
    }
}

#[ast_node("StringLiteral")]
#[derive(Eq, Hash, EqIgnoreSpan)]
pub struct Str {
    pub span: Span,

    pub value: JsWord,

    /// This includes line escape.
    #[serde(default)]
    pub has_escape: bool,

    #[serde(default)]
    pub kind: StrKind,
}

impl Take for Str {
    fn dummy() -> Self {
        Str {
            span: DUMMY_SP,
            value: js_word!(""),
            has_escape: Default::default(),
            kind: Default::default(),
        }
    }
}

/// THis enum determines how string literal should be printed.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
#[serde(tag = "type")]
pub enum StrKind {
    /// Span of string points to original source code, and codegen should use
    /// it.
    //
    /// **Note**: Giving wrong value to this field will result in invalid
    /// codegen.
    #[serde(rename = "normal")]
    Normal {
        /// Does span of this string literal contains quote?
        ///
        /// True for string literals generated by parser, false for string
        /// literals generated by various passes.
        #[serde(rename = "containsQuote")]
        contains_quote: bool,
    },
    /// If the span of string does not point a string literal, mainly because
    /// this string is synthesized, this variant should be used.
    #[serde(rename = "synthesized")]
    Synthesized,
}

/// Always returns true as this is not a data of a string literal.
impl EqIgnoreSpan for StrKind {
    fn eq_ignore_span(&self, _: &Self) -> bool {
        true
    }
}

impl Default for StrKind {
    fn default() -> Self {
        Self::Synthesized
    }
}

#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for Str {
    fn arbitrary(u: &mut arbitrary::Unstructured<'_>) -> arbitrary::Result<Self> {
        let span = u.arbitrary()?;
        let value = u.arbitrary::<String>()?.into();

        Ok(Self {
            span,
            value,
            has_escape: false,
            kind: Default::default(),
        })
    }
}

impl Str {
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.value.is_empty()
    }
}

#[ast_node("BooleanLiteral")]
#[derive(Copy, Eq, Hash, EqIgnoreSpan)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct Bool {
    pub span: Span,
    pub value: bool,
}

impl Take for Bool {
    fn dummy() -> Self {
        Bool {
            span: DUMMY_SP,
            value: false,
        }
    }
}

#[ast_node("NullLiteral")]
#[derive(Copy, Eq, Hash, EqIgnoreSpan)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct Null {
    pub span: Span,
}

impl Take for Null {
    fn dummy() -> Self {
        Null { span: DUMMY_SP }
    }
}

#[ast_node("RegExpLiteral")]
#[derive(Eq, Hash, EqIgnoreSpan)]
pub struct Regex {
    pub span: Span,

    #[serde(rename = "pattern")]
    pub exp: JsWord,

    #[serde(default)]
    pub flags: JsWord,
}

#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
impl<'a> arbitrary::Arbitrary<'a> for Regex {
    fn arbitrary(u: &mut arbitrary::Unstructured<'_>) -> arbitrary::Result<Self> {
        let span = u.arbitrary()?;
        let exp = u.arbitrary::<String>()?.into();
        let flags = "".into(); // TODO

        Ok(Self { span, exp, flags })
    }
}

#[ast_node("NumericLiteral")]
#[derive(Copy, EqIgnoreSpan)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct Number {
    pub span: Span,
    /// **Note**: This should not be `NaN`. Use [crate::Ident] to represent NaN.
    ///
    /// If you store `NaN` in this field, a hash map will behave strangely.
    #[use_eq]
    pub value: f64,
}

impl Eq for Number {}

impl Hash for Number {
    fn hash<H: Hasher>(&self, state: &mut H) {
        fn integer_decode(val: f64) -> (u64, i16, i8) {
            let bits: u64 = unsafe { mem::transmute(val) };
            let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
            let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
            let mantissa = if exponent == 0 {
                (bits & 0xfffffffffffff) << 1
            } else {
                (bits & 0xfffffffffffff) | 0x10000000000000
            };

            exponent -= 1023 + 52;
            (mantissa, exponent, sign)
        }

        self.span.hash(state);
        integer_decode(self.value).hash(state);
    }
}

impl Display for Number {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        if self.value.is_infinite() {
            if self.value.is_sign_positive() {
                Display::fmt("Infinity", f)
            } else {
                Display::fmt("-Infinity", f)
            }
        } else {
            Display::fmt(&self.value, f)
        }
    }
}